Skip to main content
Log in

Studies on morphological and magnetic properties of Co1−xCuxFe2O4 nanoparticles synthesized via thermal decomposition approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Co1−xCuxFe2O4 (x = 0.0, 0.10, 0.20 and 0.30) nanoparticles with interesting morphologies and magnetic properties were synthesized via thermal decomposition of Cu2+-substituted Co–Fe glycolates. The Cu2+-substituted Co–Fe glycolates were prepared first via a glycolate route which were then calcined at 500 °C to obtain Cu2+-substituted cobalt ferrite nanoparticles. The Cu2+-substituted Co–Fe glycolates and the Cu2+-substituted CoFe2O4 nanoparticles were characterized by various characterization techniques such as XRD, TGA, FT-IR, CHNS, FE-SEM, EDX, TEM, DRS and BET. The morphology of Cu2+-substituted cobalt ferrite nanoparticles could be tailored (hexagonal particles, hexagonal plates and near micro-spherical particles) by varying the concentration of Cu2+ used during the synthesis. Magnetic parameters such as saturation magnetization, coercivity and remanence of the Co1−xCuxFe2O4 nanoparticles were studied at 300 K and 15 K and the observed results have been explained on the basis of concentration of Cu2+, cationic distribution, size and morphology of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.R. Ahmed, P. Kofinas, Controlled room temperature synthesis of CoFe2O4 nanoparticles through a block copolymer nanoreactor route. Macromolecules 35, 3338–3341 (2002). https://doi.org/10.1021/ma011797x

    Article  CAS  Google Scholar 

  2. J.P. Kumar, G.K. Prasad, P.V.R.K. Ramacharyulu, B. Singh, S.A. Roy, Metal ferrite nanoparticles: synthesis, characterization, and studies on decontamination of sulfur mustard. J. Alloy. Compd. 692, 833–840 (2017). https://doi.org/10.1016/j.jallcom.2016.09.083

    Article  CAS  Google Scholar 

  3. K.K. Kadyrzhanov, K. Egizbek, A.L. Kozlovskiy, M.V. Zdorovets, Synthesis and properties of ferrite-based nanoparticles. Nanomaterials 9, 1–16 (2019). https://doi.org/10.3390/nano9081079

    Article  CAS  Google Scholar 

  4. J. Moyer, C. Vaz, E. Negusse, D. Arena, V. Henrich, Controlling the electronic structure of Co1-xFe2+xO4 thin films through iron doping. Phys. Rev. B: Condens. Matter. Mater. Phys. 83, 035121–035210 (2011). https://doi.org/10.1103/PhysRevB.83.035121

    Article  CAS  Google Scholar 

  5. D. Tomar, P. Jeevanandam, Synthesis of cobalt ferrite nanoparticles with different morphologies via thermal decomposition approach and studies on their magnetic properties. J. Alloy. Compd. 843, 155815 (2020). https://doi.org/10.1016/j.jallcom.2020.155815

    Article  CAS  Google Scholar 

  6. Z.J. Zhang, Z.L. Wang, B.C. Chakoumakos, J.S. Yin, Temperature dependence of cation distribution and oxidation state in magnetic Mn-Fe ferrite nanocrystals. J. Am. Chem. Soc. 120, 1800–1804 (1998). https://doi.org/10.1021/ja973085l

    Article  CAS  Google Scholar 

  7. C. Upadhyay, H.C. Verma, Cation distribution in nanosized Ni–Zn ferrites. J. Appl. Phys. 95, 5746–5751 (2004). https://doi.org/10.1063/1.1699501

    Article  CAS  Google Scholar 

  8. M. Houshiar, F. Zebhi, Z. Jafari, A. Alidoust, Z. Askari, Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: a comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater. 371, 43–48 (2014). https://doi.org/10.1016/j.jmmm.2014.06.059

    Article  CAS  Google Scholar 

  9. L.T. Lu, N.T. Dung, L.D. Tung, C.T. Thanh, O.K. Quy, N.V. Chuc, S. Maenosono, N.T.K. Thanh, Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale 8, 3141–3850 (2016). https://doi.org/10.1039/c5nr04266f

    Article  Google Scholar 

  10. M.J. Carey, S. Maat, P. Rice, R.F.C. Farrow, R.F. Marks, A. Kellock, P. Nguyen, B.A. Gurney, Spin valves using insulating cobalt ferrite exchange-spring pinning layers. Appl. Phys. Lett. 81, 1044–1046 (2002). https://doi.org/10.1063/1.1494859

    Article  CAS  Google Scholar 

  11. T.E. Torres, A.G. Roca, M.P. Morales, A. Ibarra, C. Marquina, M.R. Ibarra, G.F. Goya, Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia. J. Phys.: Conf. Ser. (2010). https://doi.org/10.1088/1742-6596/200/7/072101

    Article  Google Scholar 

  12. J.H. Lee, Y.M. Huh, Y.W. Jun, J. Seo, J. Jang, H. Song, S. Kim, E. Cho, H. Yoon, J. Suh, J. Cheon, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13, 95–99 (2007). https://doi.org/10.1038/nm1467

    Article  CAS  Google Scholar 

  13. J. Balavijayalakshmi, N. Suriyanarayanan, R. Jayapraksah, Influence of copper on the magnetic properties of cobalt ferrite nanoparticles. Mater. Lett. 81, 52–54 (2012). https://doi.org/10.1016/j.matlet.2012.04.076

    Article  CAS  Google Scholar 

  14. C.C. Naik, S.K. Gaonkar, I. Furtado, A.V. Salker, Effect of Cu2+ substitution on structural, magnetic and dielectric properties of cobalt ferrite with its enhanced antimicrobial property. J. Mater. Sci .Mater. Electron 29, 14746–14761 (2018). https://doi.org/10.1007/s10854-018-9611-1

    Article  CAS  Google Scholar 

  15. A. Samavati, M.K. Mustafa, A.F. Ismail, M.H.D. Othman, M.A. Rahman, Copper-substituted cobalt ferrite nanoparticles: structural, optical and antibacterial properties. Mater. Express 6, 473–482 (2016). https://doi.org/10.1166/mex.2016.1338

    Article  CAS  Google Scholar 

  16. M.M. Dutta, P. Phukan, Cu-doped CoFe2O4 nanoparticles as magnetically recoverable catalyst for C-N cross-coupling reaction. Catal. Commun. 109, 38–42 (2018). https://doi.org/10.1016/j.catcom.2018.02.014

    Article  CAS  Google Scholar 

  17. N. Sanpo, J. Wang, C.C. Berndt, Sol-gel synthesized copper-substituted cobalt ferrite nanoparticles for biomedical applications. J. Nano Res. 25, 110–121 (2013). https://doi.org/10.4028/www.scientific.net/JNanoR.25.110

    Article  CAS  Google Scholar 

  18. M. Hadi, K.M. Batoo, A. Chauhan, O.M. Aldossary, R. Verma, Y. Yang, Tuning of structural, dielectric, and electronic properties of Cu doped Co–Zn ferrite nanoparticles for multilayer inductor chip applications. Magnetochemistry 7, 53 (2021). https://doi.org/10.3390/magnetochemistry7040053

    Article  CAS  Google Scholar 

  19. M.P. Ghosh, S. Mukherjee, Microstructural, magnetic, and hyperfine characterizations of Cu-doped cobalt ferrite nanoparticles. J. Am. Ceram. Soc. 102, 7509–7520 (2019). https://doi.org/10.1111/jace.16687

    Article  CAS  Google Scholar 

  20. A. Anugraha, V.K. Lakshmi, G.S. Kumar, T. Raguram, K.S. Rajni, Synthesis and characterisation of copper substituted cobalt ferrite nanoparticles by sol-gel auto combustion route. IOP Conf. Ser.: Mater. Sci. Eng. (2019). https://doi.org/10.1088/1757-899X/577/1/012059

    Article  Google Scholar 

  21. V.S. Kirankumar, S. Sumathi, Copper and cerium co-doped cobalt ferrite nanoparticles: structural, morphological, optical, magnetic, and photocatalytic properties. Environ. Sci. Pollut. Res. 26, 19189–19206 (2019). https://doi.org/10.1007/s11356-019-05286-9

    Article  CAS  Google Scholar 

  22. A. Goyal, S. Kapoor, P. Samuel, V. Kumar, S. Singhal, Facile protocol for reduction of nitroarenes using magnetically recoverable CoM0.2Fe1.8O4 (M = Co, Ni, Cu and Zn) ferrite nanocatalysts. RSC Adv. 5, 51347–51363 (2015). https://doi.org/10.1039/c5ra07190a

    Article  CAS  Google Scholar 

  23. H.M.K. Tedjieukeng, P.K. Tsobnang, R.L. Fomekong, P. Etape, P.A. Joy, A. Delcorte, J.N. Lambi, Structural characterization and magnetic properties of undoped and copper-doped cobalt ferrite nanoparticles prepared by the octanoate coprecipitation route at very low dopant concentrations. RSC Adv. 8, 38621–38630 (2018). https://doi.org/10.1039/c8ra08532c

    Article  CAS  Google Scholar 

  24. M. Sundararajan, L.J. Kennedy, Photocatalytic removal of rhodamine B under irradiation of visible light using Co1-xCuxFe2O4 (0 ≤ x ≤ 0.5) nanoparticles. J. Environ. Chem. Eng. 5, 4075–4092 (2017). https://doi.org/10.1016/j.jece.2017.07.054

    Article  CAS  Google Scholar 

  25. M. Margabandhu, S. Sendhilnathan, S. Senthilkumar, D. Gajalakshmi, Investigation of structural, morphological, magnetic properties and biomedical applications of Cu2+ substituted uncoated cobalt ferrite nanoparticles. Braz. Arch. Biol. Technol. 59, 1–10 (2016). https://doi.org/10.1590/1678-4324-2016161046

    Article  CAS  Google Scholar 

  26. M. Hashim, K.S. Alimuddin, S.E. Shirsath, E.M. Mohammed, J. Shah, R.K. Kotnala, H.K. Choi, H. Chung, R. Kumar, Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. J. Alloy. Compd. 518, 11–18 (2012). https://doi.org/10.1016/j.jallcom.2011.12.017

    Article  CAS  Google Scholar 

  27. M.I.A.A. Maksoud, A. El-ghandour, G.S. El-Sayyad, A.S. Awed, R.A. Fahim, M.M. Atta, A.H. Ashour, A.I. El-Batal, M. Gobara, E.K. Abdel-Khalek, M.M. El-Okr, Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci. Mater. Electron. 30, 4908–4919 (2019). https://doi.org/10.1007/s10854-019-00785-4

    Article  CAS  Google Scholar 

  28. C. Singh, S. Bansal, V. Kumar, K.B. Tikoo, S. Singhal, Encrustation of cobalt doped copper ferrite nanoparticles on solid scaffold CNTs and their comparison with corresponding ferrite nanoparticles: a study of structural, optical, magnetic and photocatalytic properties. RSC Adv. 5, 39052–39061 (2015). https://doi.org/10.1039/c5ra03330f

    Article  CAS  Google Scholar 

  29. J. Rodriguez-Carvajal, Recent developments of the program FULLPROF. Commission on powder diffraction (IUCr). Newsletter 26, 12–19 (2001)

    Google Scholar 

  30. A. Abdallah, T. Gaudisson, R. Sibille, S. Nowak, W. Cheikhrouhou-Koubaa, K. Shinoda, M. François, S. Ammar, Structural and magnetic properties of mixed Co-Ln (Ln = Nd, Sm, Eu, Gd and Ho) diethyleneglycolate complexes. Dalton Trans. 44, 16013–16023 (2015). https://doi.org/10.1039/c5dt02346g

    Article  CAS  Google Scholar 

  31. U. Sharma, J. Pethaiyan, Sn4+ doping induced novel morphological evolution in zinc titanate heteronanostructures and studies on their optical properties. New J. Chem. 42, 7468–7479 (2018). https://doi.org/10.1039/c7nj04530a

    Article  CAS  Google Scholar 

  32. K.M. Choi, H.S. Kil, Y.S. Lee, D. Lim, S. Cho, B. Woo, Preparation and luminescence properties of SrTiO3:Pr3+, Al3+ phosphor from the glycolate method. J. Lumin. 131, 894–899 (2011). https://doi.org/10.1016/j.jlumin.2010.12.020

    Article  CAS  Google Scholar 

  33. N. Chakroune, G. Viau, S. Ammar, S.N. Jouini, P. Gredin, M.J. Vaulaya, F. Fievet, Synthesis, characterization and magnetic properties of disk-shaped particles of a cobalt alkoxide: CoII(C2H4O2). New J. Chem. 29, 355–361 (2005). https://doi.org/10.1039/b411117f

    Article  CAS  Google Scholar 

  34. G.H. Pan, T. Hayakawa, M. Nogami, Z. Hao, X. Zhang, X. Qu, J. Zhang, Zinc titanium glycolate acetate hydrate and its transformation to zinc titanate microrods: synthesis, characterization and photocatalytic properties. RSC Adv. 5, 88590–88601 (2015). https://doi.org/10.1039/c5ra18292a

    Article  CAS  Google Scholar 

  35. X. Jiang, Y. Wang, T. Herricks, Y. Xia, Ethylene glycol-mediated synthesis of metal oxide nanowires. J. Mater. Chem. 14, 695–703 (2004). https://doi.org/10.1039/b313938g

    Article  CAS  Google Scholar 

  36. V.G. Pol, Y. Langzam, A. Zaban, Application of microwave superheating for the synthesis of TiO2 rods. Langmuir 23, 11211–11216 (2007). https://doi.org/10.1021/la7020116

    Article  CAS  Google Scholar 

  37. K. Krishnan, R.S. Krishnan, Raman and infrared spectra of ethylene glycol. Proc. Indian Acad. Sci.-Sect. A 64, 111–122 (1966). https://doi.org/10.1007/BF03047675

    Article  CAS  Google Scholar 

  38. T. Fan, Y. Li, H. Zhang, Surfactant-free solvothermal synthesis of 3D flowerlike iron alkoxide (Fe-EG) micro/nanostructures: structure, formation mechanism, and Fenton oxidation of azo dyes. Ind. Eng. Chem. Res. 56, 11684–11696 (2017). https://doi.org/10.1021/acs.iecr.7b02826

    Article  CAS  Google Scholar 

  39. P. Samoila, C. Cojocaru, I. Cretescu, C.D. Stan, V. Nica, L. Sacarescu, V. Harabagiu, Nanosized spinel ferrites synthesized by sol-gel autocombustion for optimized removal of azo dye from aqueous solution. J. Nanomater. 2015, 1–13 (2015). https://doi.org/10.1155/2015/713802

    Article  CAS  Google Scholar 

  40. K. Vasundhara, S.N. Achary, S.K. Deshpande, P.D. Babu, S.S. Meena, Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. J. Appl. Phys. 113, 194101 (2013). https://doi.org/10.1063/1.4804946

    Article  CAS  Google Scholar 

  41. W.E. Mahmoud, Synthesis and optical properties of Ce-doped ZnO hexagonal nanoplatelets. J. Cryst. Growth 312, 3075–3079 (2010). https://doi.org/10.1016/j.jcrysgro.2010.07.040

    Article  CAS  Google Scholar 

  42. F. Tao, Z. Shen, Z. Wang, D. Shu, Q. Liu, Y. Sun, Oxalic acid-assisted hydrothermal synthesis and luminescent of hexagonal NaYF4: Ln3+ (Ln = Sm, Eu, Yb / Er) micro/nanoplates. J. Nanomater. 2017, 1–10 (2017). https://doi.org/10.1155/2017/5320989

    Article  CAS  Google Scholar 

  43. J. Lee, E.J. Lee, T.Y. Hwang, J. Kim, Y.H. Choa, Anisotropic characteristics and improved magnetic performance of Ca–La–Co-substituted strontium hexaferrite nanomagnets. Sci. Rep. 10, 1–9 (2020). https://doi.org/10.1038/s41598-020-72608-0

    Article  CAS  Google Scholar 

  44. S. Wu, Y. Liu, J. Chang, S. Zhang, Ligand dynamic effect on phase and morphology control of hexagonal NaYF4. CrystEngComm 16, 4472–4477 (2014). https://doi.org/10.1039/c4ce00109e

    Article  CAS  Google Scholar 

  45. G. Jia, C. Zhang, S. Ding, L. Wang, L. Lia, H. You, Synthesis and enhanced luminescence of uniform and well-dispersed quasispherical YVO4:Ln3+ (Ln = Eu, Dy) nanoparticles by a solvothermal method. CrystEngComm 14, 573–578 (2012). https://doi.org/10.1039/c1ce05725a

    Article  CAS  Google Scholar 

  46. G. Wang, J. Wang, L. Zhao, Q. Zhang, Y. Lu, Facile fabrication of fluorescent inorganic nanoparticles with diverse shapes for cell imaging. Nanomaterials 9, 1–15 (2019). https://doi.org/10.3390/nano9020154

    Article  CAS  Google Scholar 

  47. S. Dai, N. Wang, C. Qi, X. Wang, Y. Ma, L. Yang, X. Liu, Q. Huang, C. Nie, B. Hu, X. Wang, Preparation of core-shell structure Fe3O4@C@MnO2 nanoparticles for efficient elimination of U(VI) and Eu(III) ions. Sci. Total Environ. 685, 986–996 (2019). https://doi.org/10.1016/j.scitotenv.2019.06.292

    Article  CAS  Google Scholar 

  48. A. Cao, J. Hu, L. Wan, Morphology control and shape evolution in 3D hierarchical superstructures. Sci. China Chem. 55, 2249–2256 (2012). https://doi.org/10.1007/s11426-012-4726-3

    Article  CAS  Google Scholar 

  49. L. Poul, N. Jouini, F. Fievet, Layered hydroxide metal acetates (metal = zinc, cobalt, and nickel): elaboration via hydrolysis in polyol medium and comparative study. Chem. Mater. 12, 3123–3132 (2000). https://doi.org/10.1021/cm991179j

    Article  CAS  Google Scholar 

  50. S. Anjum, A. Rashid, F. Bashir, M. Pervaiz, R. Zia, Effect of Cu doped nickel ferrites on structural, magnetic and dielectric properties. Mater. Today: Proc. 2, 5559–5567 (2015). https://doi.org/10.1016/j.matpr.2015.11.086

    Article  Google Scholar 

  51. T. Zeeshan, S. Anjum, H. Iqbal, R. Zia, Substitutional effect of copper on the cation distribution in cobalt chromium ferrites and their structural and magnetic properties. Mater. Sci.-Pol. 36, 255–263 (2018). https://doi.org/10.1515/msp-2018-0011

    Article  CAS  Google Scholar 

  52. L. Kumar, P. Kumar, A. Narayan, M. Kar, Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Int. Nano Lett. 3, 1–12 (2013). https://doi.org/10.1186/2228-5326-3-8

    Article  CAS  Google Scholar 

  53. J.A. Gomes, G.M. Azevedo, J. Depeyrot, J. Mestnik-Filho, F.L.O. Paula, F.A. Tourinho, R. Perzynski, Structural, chemical, and magnetic investigations of core-shell zinc ferrite nanoparticles. J. Phys. Chem. C 116, 24281–24291 (2012). https://doi.org/10.1021/jp3055069

    Article  CAS  Google Scholar 

  54. S.H. Ng, S.Y. Chew, D.I. Dos Santos, J. Chen, J.Z. Wang, S.X. Dou, H.K. Liu, Hexagonal-shaped tin glycolate particles: a preliminary study of their suitability as Li-ion insertion electrodes. Chem. Asian J. 3, 854–861 (2008). https://doi.org/10.1002/asia.200700321

    Article  CAS  Google Scholar 

  55. R. Gaur, P. Jeevanandam, Synthesis of Cd1−xZnxS nanoparticles by a novel thermal decomposition approach and studies on their optical properties. J. Mater. Sci. Mater. Electron. 26, 7223–7231 (2015). https://doi.org/10.1007/s10854-015-3348-x

    Article  CAS  Google Scholar 

  56. G. Kiruthigaa, C. Manoharan, C. Raju, S. Dhanapandian, V. Thanikachalam, Synthesis and spectroscopic analysis of undoped and Zn doped SnS2 nanostructure by solid state reaction method. Mater. Sci. Semicond. Process. 26, 533–539 (2014). https://doi.org/10.1016/j.mssp.2014.05.048

    Article  CAS  Google Scholar 

  57. D.M. Jnaneshwara, D.N. Avadhani, B. Daruka Prasad, B.M. Nagabhushana, H. Nagabhushana, S. Sharma, S.C. Prashantha, C. Shivakumara, Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. J. Alloy. Compd. 587, 50–58 (2014). https://doi.org/10.1016/j.jallcom.2013.10.146

    Article  CAS  Google Scholar 

  58. M.A. Almessiere, Y. Slimani, A.D. Korkmaz, N. Taskhandi, M. Sertkol, A. Baykal, S.E. Shirsath, I. Ercan, B. Ozçelik, Sonochemical synthesis of Eu3+ substituted CoFe2O4 nanoparticles and their structural, optical and magnetic properties. Ultrason. Sonochem. 58, 104621 (2019). https://doi.org/10.1016/j.ultsonch.2019.104621

    Article  CAS  Google Scholar 

  59. D.M. Jnaneshwara, D.N. Avadhani, B. Daruka Prasad, B.M. Nagabhushana, H. Nagabhushana, S.C. Sharma, C. Shivakumara, J.L. Rao, N.O. Gopal, S.C. Ke, R.P.S. Chakradhar, Electron paramagnetic resonance, magnetic and electrical properties of CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 339, 40–45 (2013). https://doi.org/10.1016/j.jmmm.2013.02.028

    Article  CAS  Google Scholar 

  60. M.A. Almessiere, Y. Slimani, A.D. Korkmaz, M. Sertkol, A. Baykal, I. Ercan, B. Özçelik, Sonochemical synthesis of CoFe2-xNdxO4 nanoparticles: structural, optical, and magnetic investigation. J. Supercond. Nov. Magn. 32, 3837–3844 (2019). https://doi.org/10.1007/s10948-019-05147-z

    Article  CAS  Google Scholar 

  61. M.A. Almessiere, Y. Slimani, S. Guner, M. Nawaz, A. Baykal, F. Aldakheel, A. Sadaqat, I. Ercan, Effect of Nb substitution on magneto-optical properties of Co0.5Mn0.5Fe2O4 nanoparticles. J. Mol. Struct. 1195, 269–279 (2019). https://doi.org/10.1016/j.molstruc.2019.05.075

    Article  CAS  Google Scholar 

  62. D. Sharma, N. Khare, Tuning of optical bandgap and magnetization of CoFe2O4 thin films. App. Phys. Lett. 105, 032404 (2014). https://doi.org/10.1063/1.4890863

    Article  CAS  Google Scholar 

  63. M.P. Ghosh, S. Mukherjee, Size variation in nanocrystalline Zn0.2Ni0.8Gd0.05Fe1.95O4 ferrites: exchange bias effect and its correlation with disordered surface spins. Mater. Res. Bull. 125, 110785 (2020). https://doi.org/10.1016/j.materresbull.2020.110785

    Article  CAS  Google Scholar 

  64. A. López-Ortega, E. Lottini, C.D.J. Fernández, C. Sangregorio, Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem. Mater. 27, 4048–4056 (2015). https://doi.org/10.1021/acs.chemmater.5b01034

    Article  CAS  Google Scholar 

  65. M.A. Almessiere, Y. Slimani, M. Sertkol, F.A. Khan, M. Nawaz, H. Tombuloglu, E.A. Al-Suhaimi, A. Baykal, Ce–Nd Co-substituted nanospinel cobalt ferrites: an investigation of their structural, magnetic, optical, and apoptotic properties. Ceram. Int. 45, 16147–16156 (2019). https://doi.org/10.1016/j.ceramint.2019.05.133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Council of Scientific and Industrial Research (CSIR), Government of India (project number 01(2941)/18/EMR-II). Dimpal Tomar thanks the CSIR for the award of fellowship (JRF/SRF). Thanks are due to Institute Instrumentation Centre, IIT Roorkee for providing different instrumental facilities. The authors are also thankful to the Department of Metallurgical and Materials Engineering, IIT Roorkee for providing the HRTEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jeevanandam.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomar, D., Jeevanandam, P. Studies on morphological and magnetic properties of Co1−xCuxFe2O4 nanoparticles synthesized via thermal decomposition approach. J Mater Sci: Mater Electron 33, 3514–3534 (2022). https://doi.org/10.1007/s10854-021-07543-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07543-5

Navigation