Skip to main content
Log in

Effect of Ni and TiO2 particle addition on the wettability and interfacial reaction of Sn20Bi lead-free solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the powder samples are mechanically ball-milled by powder metallurgy, cold pressed and shaped, then melted, and finally, the samples are wire cut to the proper size and wetted to obtain composite solder joints under the action of reflow. The effects of Ni and TiO2 powders on the microstructure and wettability of Sn-20Bi composite solder joints were investigated, and the morphological growth of interfacial intermetallic compounds (IMCs) was evaluated and analyzed. The results show that the addition of appropriate amounts of Ni and TiO2 powders can refine the microstructure of the composite solder and improve the wettability. The addition of Ni particles could not inhibit the growth of the Interfacial intermetallic compounds (IMCs) layer. In contrast, the addition of TiO2 particles could effectively inhibit the growth of the IMCs layer of Sn20Bi composite solder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S.J. Kang, C. Kocabas, T. Ozel, High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. J. Nat. Nanotechnol. 2(4), 230 (2007). https://doi.org/10.1038/nnano.2007.77

    Article  CAS  Google Scholar 

  2. M. Abtew, G. Selvaduray, Lead-free Solders in Microelectronics. J. Mater. Sci. Eng. R. (2000). https://doi.org/10.1016/S0927-796X(00)00010-3

    Article  Google Scholar 

  3. F.Y. Hung, H.M. Lin, P.S. Chen, A study of the thin film on the surface of Sn-3.5Ag/Sn-3.5Ag-2.0Cu lead-free alloy. J. Alloys Compd. 415(12), 85–92 (2006). https://doi.org/10.1016/j.jallcom.2005.07.050

    Article  CAS  Google Scholar 

  4. M. Mccormack, S. Jin, G.W. Kammlott, New Pb-free solder alloy with superior mechanical properties. J. Appl. Phys. Lett. 63(1), 15–17 (1993). https://doi.org/10.1063/1.109734

    Article  CAS  Google Scholar 

  5. J. Liang, P.S. Lee, N. Gollhardt, Creep study for fatigue life assessment of two Pb-free high temperature solder alloys. J. Mater. Res. Soc. Symp. Proc. 445, 307–312 (1997). https://doi.org/10.1557/PROC-445-307

    Article  CAS  Google Scholar 

  6. J. Bath, C. Handerwer, E. Bradley, Research update: lead-free solder alternatives. J. Circuit Assem. 11, 30–41 (2000)

    Google Scholar 

  7. K. Nogita, J. Read, T. Nishimura, Microstructure control in Sn-0.7mass%Cu alloys. J. Mater. Trans. 46(11), 2419–2425 (2005). https://doi.org/10.2320/matertrans.46.2419

    Article  CAS  Google Scholar 

  8. E. Bradley, J. Bath, C. Whitten, Lead-free project focuses on electronics assemblies. J. Adv. Packag. 9, 34–42 (2000)

    Google Scholar 

  9. Y.S. Kim, K.S. Kim, Effect of composition and cooling rate on microstructure and tensile properties of Sn-Zn-Bi alloys. J. Alloys Compd. 352, 237–245 (2003)

    Article  CAS  Google Scholar 

  10. P.T. Vianco, A.C. Kilgo, R. Grant, Intermetallic compound layer growth by solid state reactions between 58Bi-42Sn solder and copper. J. Electron. Mater. 24, 1493–1505 (1995). https://doi.org/10.1007/BF02655468

    Article  CAS  Google Scholar 

  11. P.T. Vianco, Solder alloys: a look at the past, present and future: stricter environmental laws and harsher service environments are providing the impetus for new solder alloy development. J. Weld. J. 76(3) (1997)

  12. Z. Zhu, Y.C. Chan, Z. Chen, Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder. J. Mater. Sci. Eng. A 727, 160–169 (2018). https://doi.org/10.1016/j.msea.2018.05.002

    Article  CAS  Google Scholar 

  13. Y.C. Chan, Effect of silver (Ag) nanoparticle size on the microstructure and mechanical properties of Sn58Bi-Ag composite solders. J. Alloys Compd. 645, 566–576 (2015)

    Article  Google Scholar 

  14. Y.W. Wang, Y.W. Lin, C.T. Tu, Effects of minor Fe Co, and Ni additions on the reaction between SnAgCu solder and Cu. J. J. Alloys Compd. 478, 121–127 (2009). https://doi.org/10.1016/j.jallcom.2008.11.052

    Article  CAS  Google Scholar 

  15. K.Y. Lee, L. Ming, D.R. Olsen, Microstructure joint strength and failure mechanism of Sn-Ag, Sn-Ag-Cu versus Sn-Pb-Ag solders in BGA packages, in Conference: electronic components and technology conference. ed. by R. Ann (IEEE, Piscataway, 2001), pp. 478–485. https://doi.org/10.1109/ECTC.2001.927770

    Chapter  Google Scholar 

  16. L. Yang, J. Dai, Y. Zhang, Y. Jing, J. Ge, H. Liu, Influence of BaTiO3 Nanoparticle Addition on Microstructure and Mechanical Properties of Sn-58Bi Solder. J. Electron. Mater. 44, 2473–2478 (2015)

    Article  CAS  Google Scholar 

  17. L. Yang, D. Wei, Y. Zhang, Effect of aging temperature on microstructure and mechanical properties of Sn-9Zn-xZrC solder joints. J. J. Mater. Sci. 30, 753–759 (2019)

    Article  CAS  Google Scholar 

  18. L. Zhang, K.N. Tu, Structure and properties of lead-free solders bearing micro and nano particles. J. Mater. Sci. Eng. R. (2014). https://doi.org/10.1016/j.mser.2014.06.001

    Article  Google Scholar 

  19. T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials. J. Mater. Sci. Eng. 49, 1–60 (2006)

    Google Scholar 

  20. F. Wang, L. Zhou, X. Wang, Microstructural evolution and joint strength of Sn-58Bi/Cu joints through minor Zn alloying substrate during isothermal aging. J. Alloys Compd. 688, 639–648 (2016)

    Article  CAS  Google Scholar 

  21. C. Jbab, A. Dyy, A. Yhk, Intermetallic compound growth between Sn-Cu-Cr lead-free solder and Cu substrate. J. Microelectron. Reliab. 99, 62–73 (2019). https://doi.org/10.1016/j.microrel.2019.05.019

    Article  CAS  Google Scholar 

  22. L. Yang, L. Zhu, Y. Zhang, S. Zhou, G. Wang, S. Shen, X. Shi, Microstructure, IMCs layer and reliability of Sn-58Bi solder joint reinforced by Mo nanoparticles during thermal cycling. J. Mater. Charact. 148, 280–291 (2019). https://doi.org/10.1016/j.matchar.2018.12.012

    Article  CAS  Google Scholar 

  23. S.L. Tay, A.S. Haseeb, M.R. Johan, P.R. Munroe, M.Z. Quadir, Influence of Ni nanoparticle on the morphology and growth of interfacial intermetallic compounds between Sn-3.8Ag-0.7Cu lead-free solder and copper substrate. J. Intermet. (2013). https://doi.org/10.1016/j.intermet.2012.09.016

    Article  Google Scholar 

  24. L. Yang, Z. Wei, Y. Liang, Improved microstructure and mechanical properties for Sn58Bi solder alloy by addition of Ni-coated carbon nanotubes. J. Mater. Sci. Eng. A 642, 7–15 (2015). https://doi.org/10.1016/j.msea.2015.06.080

    Article  CAS  Google Scholar 

  25. J.W. Yoon, B.I. Noh, B.K. Kim, C.C. Shur, S.B. Jung, Wettability and interfacial reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu solder joints. J. Alloys Compd. 486, 142–147 (2013)

    Article  Google Scholar 

  26. A.K. Gain, Y.C. Chan, W.K.C. Yung, Microstructure, thermal analysis and hardness of a Sn-Ag-Cu-1wt% nano-TiO2 composite solder on flexible ball grid array substrates. J. Microelectron. Reliab. 51, 975–984 (2011). https://doi.org/10.1016/j.microrel.2011.01.006

    Article  CAS  Google Scholar 

  27. K. Kanlayasiri, T. Ariga, Physical properties of Sn58Bi-XNi lead-free solder and its interfacial reaction with copper substrate. J. Mater. Des. 86, 371–378 (2015). https://doi.org/10.1016/j.matdes.2015.07.108

    Article  CAS  Google Scholar 

  28. M.A.A.M. Salleh, S.D. Mcdonald, C.M. Gourlay, Suppression of Cu6Sn5 in TiO2 reinforced solder joints after multiple reflow cycles. J. Mater. Des. 15, 41 (2016). https://doi.org/10.1016/j.matdes.2016.06.121

    Article  CAS  Google Scholar 

  29. P.L. Tu, Y.C. Chan, K.C. Hung, Growth kinetics of intermetallic compounds in chip scale package solder joint. J. Scr. Mater. 44(2), 317–323 (2001). https://doi.org/10.1016/S1359-6462(00)00590-X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work is supported by the Guangxi Natural Science Foundation (2020GXNSFBA297062, 2018GXNSFDA050008, 2020GXNSFAA159093), the National Natural Science Foundation of China (51761002), and the Training Plan of High-Level Talents of Guangxi University (XMPZ160714).

Author information

Authors and Affiliations

Authors

Contributions

QS completed the experimental operation and thesis writing of this research. YL and YZ provided financial assistance to this research. JY, DQ, and WQ respectively carried out preliminary sample preparation, data processing, and later thesis revision work.

Corresponding authors

Correspondence to Yitai Li or Yongzhong Zhan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Q., Li, Y., Yu, J. et al. Effect of Ni and TiO2 particle addition on the wettability and interfacial reaction of Sn20Bi lead-free solder. J Mater Sci: Mater Electron 33, 3306–3319 (2022). https://doi.org/10.1007/s10854-021-07531-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07531-9

Navigation