Skip to main content
Log in

Design and synthesis of 3D hierarchical NiMoS4 nanowire arrays in situ grown on graphene foam: electrochemical determination of epinephrine

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is crucial to design and construct highly sensitive electrode materials for the detection of biomolecules. In this paper, 3D hierarchical NiMoS4 NWAs@GF was designed for the detection of epinephrine (EP). The 3D GF has a pore size of 200 μm as a conducting matrix with remarkable electronic conductivity. The grass-like NiMoS4 NWAs on the GF have a length of about 20 μm and the diameter about 180 nm, which not only increase the specific surface area but also provide more active sites. As expected, the NiMoS4 NWAs@GF/ITO electrode showed a remarkable electrochemical performance in the detection of EP in a wide concentration range (0-60 µM), with a high sensitivity of 3.93 µA µM−1, and a low detection limit of 0.02 µM (S/N=3). In addition, it can be used to determine EP in real samples. The NiMoS4 NWAs@GF/ITO electrode is proven to be a reliable and sensitive biosensor electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. X. Ma, M. Chao, Z. Wang, Anal. Methods 4(6), 1687 (2012). https://doi.org/10.1039/C2AY25040C

    Article  CAS  Google Scholar 

  2. T. Thomas, R.J. Mascarenhas, P. Martis, P. Martis, Z. Mekhalif, B.E. KumaraSwamy, Mater. Sci. Eng., C 33, 3294 (2013). https://doi.org/10.1016/j.msec.2013.04.010

    Article  CAS  Google Scholar 

  3. N.G. Tsierkezos, U. Ritter, Y.N. Thaha, A. knauer, D. Fernandes, A. Kelarakis, E.K. McCarthy, Chem. Phys. Lett. 710, 157 (2018). https://doi.org/10.1016/j.cplett.2018.09.007

    Article  CAS  Google Scholar 

  4. J.J. Willemsen, H.A. Ross, M.C. Jacobs, J.W. Lenders, T. Thien, L.M. Swinkels, T.J. Benraad, Clin. Chem. 41(10), 1455 (1995). https://doi.org/10.1093/clinchem/41.10.1455

    Article  CAS  Google Scholar 

  5. Y. Zhao, S. Zhao, J. Huang, F. Ye, Talanta 85(5), 2650 (2011). https://doi.org/10.1016/j.talanta.2011.08.032

    Article  CAS  Google Scholar 

  6. C.G. Amorim, A.N. Araujo, M. Montenegro, Talanta 72(4), 1255 (2007). https://doi.org/10.1016/j.talanta.2007.01.070

    Article  CAS  Google Scholar 

  7. M.A. Fotopoulou, P.C. Ioannou, Anal. Chim. Acta 462(2), 179 (2002). https://doi.org/10.1016/S0003-2670(02)00312-4

    Article  CAS  Google Scholar 

  8. W. Dong, Y. Ren, Z. Bai, J. Jiao, Y. Chen, B. Han, Q. Chen, J. Colloid Interface Sci. 512, 812 (2018). https://doi.org/10.1016/j.jcis.2017.10.071

    Article  CAS  Google Scholar 

  9. J. Tashkhourian, S.F. Nami-Ana, M. Shamsipur, J. Mol. Liq. 266, 548 (2018). https://doi.org/10.1016/j.molliq.2018.06.093

    Article  CAS  Google Scholar 

  10. T.P. Tsele, A.S. Adekunle, O.E. Fayemi, E.E. Ebenso, Electrochim. Acta 243, 331 (2017). https://doi.org/10.1016/j.electacta.2017.05.031

    Article  CAS  Google Scholar 

  11. H. Khosropour, B. Rezaei, P. Rezaei, A.A. Ensafi, Anal. Chim. Acta 1111, 92 (2020). https://doi.org/10.1016/j.aca.2020.03.047

    Article  CAS  Google Scholar 

  12. F. Zhang, M. Wang, D. Zeng, H. Zhang, Y. Li, X. Su, Anal Chim Acta 1089, 123 (2019). https://doi.org/10.1016/j.aca.2019.09.005

    Article  CAS  Google Scholar 

  13. K.J. Huang, J.Z. Zhang, Y.J. Liu, L.L. Wang, Sens. Actuators, B 194, 303 (2014). https://doi.org/10.1016/j.snb.2013.12.106

    Article  CAS  Google Scholar 

  14. M. Arivazhagan, A. Shankar, G. Maduraiveeran, Microchim. Acta 187(8), 1 (2020). https://doi.org/10.1007/s00604-020-04431-3

    Article  CAS  Google Scholar 

  15. Z. Yang, Y. Zhu, M. Chi, C. Wang, Y. Wei, X. Lu, J. Colloid Interface Sci. 511, 383 (2018). https://doi.org/10.1016/j.jcis.2017.09.097

    Article  CAS  Google Scholar 

  16. D. Geng, X. Bo, L. Guo, Sens. Actuators, B 244, 131 (2017). https://doi.org/10.1016/j.snb.2016.12.122

    Article  CAS  Google Scholar 

  17. X. Huang, L. Gou, Nanotechnology 31(18), 185602 (2020). https://doi.org/10.1088/1361-6528/ab6d9a

    Article  CAS  Google Scholar 

  18. Y. Xu, A. Sumboja, A. Groves, T. Ashton, Y. Zong, J.A. Darr, RSC Adv 10(68), 41871 (2020). https://doi.org/10.1039/D0RA08363A

    Article  CAS  Google Scholar 

  19. R. Sakthivel, S. Kubendhiran, S.M. Chen, J.V. Kumar, Anal. Chim. Acta 1071, 98 (2019). https://doi.org/10.1016/j.aca.2019.04.058

    Article  CAS  Google Scholar 

  20. H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Nanoscale 5(19), 8879 (2013). https://doi.org/10.1039/C3NR02958A

    Article  CAS  Google Scholar 

  21. H. Ding, L. Yang, H. Jia, D. Fan, Y. Zhang, X. Sun, Q. Wei, H. Ju, Sens. Actuators, B 312, 127980 (2020). https://doi.org/10.1016/j.snb.2020.127980

    Article  CAS  Google Scholar 

  22. S. Sakthinathan, S. Kubendhiran, S.M. Chen, C. Karuppiah, T.W. Chiu, J.Phys. Chem. C 121(26), 14096 (2017). https://doi.org/10.1021/acs.jpcc.7b01941

    Article  CAS  Google Scholar 

  23. X.Y. Yu, X.W. Lou, Adv. Energy Mater 8(3), 1701592 (2018). https://doi.org/10.1002/aenm.201701592

    Article  CAS  Google Scholar 

  24. X. Jiang, X. Lin, Analyst 130(3), 391 (2005). https://doi.org/10.1039/B412967A

    Article  CAS  Google Scholar 

  25. Y. Zhao, J. Liu, Y. Hu, H. Cheng, C. Hu, C. Jiang, L. Jiang, A. Cao, L.Qu, Adv. Mater. 25(4), 591 (2013). https://doi.org/10.1002/adma.201203578

    Article  CAS  Google Scholar 

  26. H.Y. Yue, S. Huang, J. Chang, C. Heo, F. Yao, S. Adhikari, F. Gunes, L.C. Liu, T.H. Lee, E.S. Oh, B. Li, J.J. Zhang, T.Q. Huy, N.V. Luan, Y.H. Lee,Acs Nano 8(2), 1639 (2014). https://doi.org/10.1021/nn405961p

    Article  CAS  Google Scholar 

  27. J.L. Liu, L.L. Zhang, H.B. Wu, J.Y. Lin, Z.X. Shen, X.W. Lou, Energy Environ. Sci. 7(11), 3709 (2014). https://doi.org/10.1039/C4EE01475H

    Article  CAS  Google Scholar 

  28. R. Sakthivel, S. Kubendhiran, S.M. Chen, T.W. Chen, N. Al-Zaqri, A. Alsalme, F.A. Alharthi, M.M. Khanjer, T.W. Tseng, C.C. Huang, Anal Chim Acta 1086, 55 (2019). https://doi.org/10.1016/j.aca.2019.07.073

    Article  CAS  Google Scholar 

  29. J. Staszak-Jirkovský, C.D. Malliakas, P.P. Lopes, N. Danilovic, S.S. Kota, K.C. Chang, B. Genorio, D. Strmcnik, V.R. Stamenkovic, M.G. Kanatzids, N.M. Markovic, Nat. Mater. 15(2), 197 (2016). https://doi.org/10.1038/nmat4481

    Article  CAS  Google Scholar 

  30. M.A.R. Anjum, H.Y. Jeong, M.H. Lee, H.S. Shin, J.S. Lee, Adv. Mater. 30(20), 1707105 (2018). https://doi.org/10.1002/adma.201707105

    Article  CAS  Google Scholar 

  31. X. Yang, J. Mao, H. Niu, Q. Wang, K. Zhu, G. Wang, D. Cao, J. Yan, Chem. Eng. J. 406, 126713 (2021). https://doi.org/10.1016/j.cej.2020.126713

    Article  CAS  Google Scholar 

  32. G. Wang, Y. Xu, H. Yue, R. Jin, S. Gao, J. Colloid Interface Sci. 561, 854 (2020). https://doi.org/10.1016/j.jcis.2019.11.068

    Article  CAS  Google Scholar 

  33. H. Wang, Q. Zhang, H. Yao, Z. Liang, H. Lee, P. Hsu, G. Zheng, Y. Cui,Nano Lett. 14(12), 7138 (2014). https://doi.org/10.1021/nl503730c

    Article  CAS  Google Scholar 

  34. J. Kibsgaard, T.F. Jaramillo, F. Besenbacher, Nat. Chem. 6(3), 248 (2014). https://doi.org/10.1038/nchem.1853

    Article  CAS  Google Scholar 

  35. C. Tang, Z. Pu, L. Qian, A.M. Asiri, X. Sun, Electrochim. Acta 153, 508 (2015). https://doi.org/10.1016/j.electacta.2014.12.043

    Article  CAS  Google Scholar 

  36. D. Kong, Y. Wang, L.Y. Von, S.Z. Huang, J. Zhang, B. Liu, T.P. Chen, H.Y. Yang, Nano Energy 49, 460 (2018). https://doi.org/10.1016/j.nanoen.2018.04.051

    Article  CAS  Google Scholar 

  37. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97(18), 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  38. X.R. Guo, H.Y. Yue, S. Huang, X. Gao, H.T. Chen, P.F. Wu, T. Zhang, Z.Z. Wang, Microchim. Acta 187(4), 1 (2020). https://doi.org/10.1007/s00604-020-4199-6

    Article  CAS  Google Scholar 

  39. A. Dehdashti, A. Babaei, J. Electroanal. Chem. 862, 113949 (2020). https://doi.org/10.1016/j.jelechem.2020.113949

    Article  CAS  Google Scholar 

  40. H.N. Luk, Y.H. Chen, C.Y. Hsieh, Y.W. Han, R.J. Wu, C. Murthy, J. Nanosci. Nanotechnol. 20(5), 2705 (2020). https://doi.org/10.1166/jnn.2020.17437

    Article  CAS  Google Scholar 

  41. N.B. Li, L.M. Niu, H.Q. Luo, Microchim. Acta 153, 37–44 (2006). https://doi.org/10.1007/s00604-005-0430-8

    Article  CAS  Google Scholar 

  42. M. Safaei, H. Beitollahi, M.R. Shishehbore, Russ. J. Electrochem. 54(11), 851 (2018). https://doi.org/10.1134/S1023193518130402

    Article  CAS  Google Scholar 

  43. B. Soleymani, B. Zargar, S. Rastegarzadeh, J. Iran. Chem. Soc. 17(5), 1013 (2019). https://doi.org/10.1007/s13738-019-01836-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Foundation for Universities of Heilongjiang province (Grant No. LGYC2018JQ012), the Natural Science Foundation of Heilongjiang Province (Grant No. YQ2021B007), and the ‘Chunhui’ plan, Ministry of Education of the People’s Republic of China (Grant No. HLJ2019007).

Author information

Authors and Affiliations

Authors

Contributions

HZ: Conceptualization, methodology, and writing—original draft. HY: Writing—review & editing and Supervision. SH: Visualization and resources. XG: Data curation and software. SY: Investigation. YX: Investigation. JL: Investigation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongyan Yue.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 764 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yue, H., Huang, S. et al. Design and synthesis of 3D hierarchical NiMoS4 nanowire arrays in situ grown on graphene foam: electrochemical determination of epinephrine. J Mater Sci: Mater Electron 33, 3275–3283 (2022). https://doi.org/10.1007/s10854-021-07528-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07528-4

Navigation