Skip to main content
Log in

Zinc oxide nanodiffusers to enhance p3ht:pcbm organic solar cells performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work proposes a new approach on exploring Zinc Oxide (ZnO) nanodiffusers to improve organic solar cell (OSC) performance. ZnO nanoparticles (NPs) dispersed on the OSC top surface can reduce the device reflection and enhance the absorption of solar radiation in the photovoltaic active layer, due to the introduction of non-orthogonal light pathways in the device. The behavior of an organic P3HT:PCBM PV module was experimentally evaluated under different outdoor conditions (long-term measurements), confirming the increase of the OSC efficiency under diffuse radiation. The ZnO nanodiffusers contribution on the enhancement of OSCs performance was analyzed via computational simulations, based on finite element method. ZnO NPs with 160 nm in diameter were prepared by a green synthesis route and experimentally characterized. The results indicate that ZnO nanospheres of 160 nm in diameter present a high average Albedo value (0.88) in the visible spectrum range. The evaluated nanostructures scatter solar radiation predominantly in the forward direction. The use of ZnO NPs (160 nm diameter) on the organic solar cell top surface can reduce the device reflectance up to 95% at 530 nm, promoting an efficient light-coupling into the P3HT:PCBM active layer and simultaneously increasing the OSC active layer absorbance (26%). Light-trapping and anti-reflection contributions improve the photocurrent generation by enhancing the OSC short circuit current density by 27.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors declare that they have availability of data and materials reported in this paper.

References

  1. B. Ekwurzel, J. Boneham, M.W. Dalton, R. Heede, R.J. Mera, M.R. Allen, P.C. Frumhoff, The rise in global atmospheric CO2, surface temperature, and sea level from emissions traced to major carbon producers. Clim. Change 144, 579–590 (2017)

    Article  Google Scholar 

  2. C. Sun, F. Pan, H. Bin, J. Zhang, L. Xue, B. Qiu, Z. Wei, Z. Zhang, Y. Li, A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 9, 743 (2018)

    Article  Google Scholar 

  3. H. Huang, X. Li, C. Sun, I. Angunawela, B. Qiu, J. Du, S. Qin, L. Meng, Z. Zhang, H. Ade, Y. Li, Green solvent-processed organic solar cells based on a low cost polymer donor and a small molecule acceptor. J. Mater. Chem. C 8, 7718–7724 (2020)

    Article  CAS  Google Scholar 

  4. NREL, Best research cell efficiencies https://www.nrel.gov/pv/assets/images/efficiency-chart.png. Accessed 09 Dec 20

  5. M. Scharber, N. Sariciftci, Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 38(12), 1929–1940 (2013)

    Article  CAS  Google Scholar 

  6. L. Córcoles, J. Abad, J. Padilla, A. Urbina, Wavelength influence on the photodegradation of P3HT:PCBM organic solar cells. Sol. Energy Mater. Sol. Cells 141, 423–428 (2015)

    Article  Google Scholar 

  7. P. Fonteyn, S. Lizin, W. Maes, The evolution of the most important research topics in organic and perovskite solar cell research from 2008 to 2017: a bibliometric literature review using bibliographic coupling analysis. Sol. Energy Mater. Sol. Cells 207, 110325 (2020)

    Article  CAS  Google Scholar 

  8. S. Jung, Y. Lee, J. Youn, H. Moon, J. Jang, J. Kim, Effect of the active-layer thickness on the shortcircuit current analyzed using the generalized transfer matrix method. J. Informat. Display 14, 7–11 (2013)

    Article  CAS  Google Scholar 

  9. T. Zhang, S. Iqbal, X. Zhang, W. Wu, D. Su, H. Zhou, Recent advances in highly efficient organic-silicon hybrid solar cells. Sol. Energy Mater. Sol. Cells 204, 110245 (2020)

    Article  CAS  Google Scholar 

  10. M. Boccard et al., Nanometer- and micrometer-scale texturing for high-efficiency micromorph thin-film silicon solar cells. IEEE J. Photovolt. 2, 83–87 (2012)

    Article  Google Scholar 

  11. A. Mellor et al., Nanoparticle scattering for multijunction solar cells: the tradeoff between absorption enhancement and transmission loss. IEEE J. Photovol. 6, 1678–1687 (2016)

    Article  Google Scholar 

  12. L.Q. Cao, Z. He, W.E.I. Sha, R.S. Chen, Influence of geometry of metallic nanoparticles on absorption of thin-film organic solar cells: a critical examination. IEEE Access 8, 145950–145959 (2020)

    Article  Google Scholar 

  13. N. Senthilkumar, A. Arulraj, E. Nandhakumar, M. Ganapathy, M. Vimalan, I. Vetha Potheher, Green mediated synthesis of plasmonic nanoparticle (Ag) for antireflection coating in bare mono silicon solar cell. J. Mater. Sci.: Mater. Electron. 29(15), 12744–12753 (2018)

    CAS  Google Scholar 

  14. G.D. Spyropoulos, M.M. Stylianakis, E. Stratakis, E. Kymakis, Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer. Appl. Phys. Lett. 100, 213904 (2012)

    Article  Google Scholar 

  15. S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007)

    Article  Google Scholar 

  16. A. Kucherik, S. Kutrovskaya, A. Osipov, M. Gerke, I. Chestnov, S. Arakelian, A.V. Kavokin, Nano-antennas based on silicon-gold nanostructures. Sci. Rep. 9(1), 1–6 (2019)

    Article  CAS  Google Scholar 

  17. M. Notarianni, K. Vernona, A. Chou, M. Aljadab, J. Liu, N. Motta, Plasmonic effect of gold nanoparticles in organic solar cells. Sol. Energy 106, 23–37 (2013)

    Article  Google Scholar 

  18. A. Srivastava, D.P. Samajdar, D. Sharma, Plasmonic effect of different nanoarchitectures in the efficiency enhancement of polymer based solar cells: a review. Sol. Energy 173, 905–919 (2018)

    Article  CAS  Google Scholar 

  19. Z. Yang, P. Gao, C. Zhang, X. Li, J. Ye, Scattering effect of the highindex dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells. Sci. Rep. 6, 30503 (2016)

    Article  CAS  Google Scholar 

  20. L. Stevens, O. Höhn, M. Hanser, N. Tucher, C. Müller, S. Glunz, B. Bläsi, Impact of the refractive index on coupling structures for silicon solar cells. J. Photon. Energy 11(2), 027001 (2021)

    Article  CAS  Google Scholar 

  21. K. Li, S. Haque, A. Martins, E. Fortunato, R. Martins, M. Mendes, C. Schuster, Light trapping in solar cells: simple design rules to maximize absorption. Optica 7, 1377–1384 (2020)

    Article  Google Scholar 

  22. T. Chang, P. Wu, S. Chen, C. Chan, C. Lee, C. Chen, Y. Su, Efficiency enhancement in GaAs solar cells using self-assembled microspheres. Opt. Express 17, 6519–6524 (2009)

    Article  CAS  Google Scholar 

  23. C. Reynaud, R. Clerc, P. Lechêne, M. Hébert, A. Cazier, A. Arias, Evaluation of indoor photovoltaic power production under directional and diffuse lighting conditions. Sol. Energy Mater. Sol. Cells 200, 110010 (2019)

    Article  CAS  Google Scholar 

  24. M. Ramya, T.K. Nideep, V.P.N. Nampoori, M. Kailasnath, The impact of ZnO nanoparticle size on the performance of photoanodes in DSSC and QDSSC: a comparative study. J. Mater. Sci.: Mater. Electron. 32, 3167–3179 (2021)

    CAS  Google Scholar 

  25. C. Stelling, C.R. Singh, M. Karg, T.A.F. König, M. Thelakkat, M. Retsch, Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells. Sci. Rep. 7, 42530 (2017)

    Article  CAS  Google Scholar 

  26. S. Park, S.J. Tark, J.S. Lee, H. Lim, D. Kim, Effects of intrinsic ZnO buffer layer based on P3HT/PCBM organic solar cells with Al-doped ZnO electrode. Sol. Energy Mater. Sol. Cells 93(6–7), 1020–1023 (2009)

    Article  CAS  Google Scholar 

  27. X. Yu, X. Yu, J. Zhang, D. Zhang, L. Chen, Y. Long, Light-trapping Al-doped ZnO thin films for organic solar cells. Sol. Energy 153, 96–103 (2017)

    Article  CAS  Google Scholar 

  28. Z. Feng, R. Jia, B. Dou, H. Li, Z. Jin, X. Liu, F. Li, W. Zhang, C. Wu, Enhanced properties of silicon nano-textured solar cells enabled by controlled ZnO nanorods coating. Sol. Energy 115, 770–776 (2015)

    Article  CAS  Google Scholar 

  29. M. Lee, H. Yen, N. Cheng, Efficiency enhancement of DSSC with aqueous solution deposited ZnO nanotip array. IEEE Photonics Technol. Lett. 26(5), 454–456 (2014)

    Article  CAS  Google Scholar 

  30. Z. Wu et al., Bridging for carriers by embedding metal oxide nanoparticles in the photoactive layer to enhance performance of polymer solar cells. IEEE J. Photovol. 10(5), 1353–1358 (2020)

    Article  Google Scholar 

  31. S. Middya, A. Layek, A. Dey, P.P. Ray, Morphological impact of ZnO nanoparticle on MEHPPV:ZnO based hybrid solar cell. J. Mater. Sci.: Mater. Electron. 24(11), 4621–4629 (2013)

    CAS  Google Scholar 

  32. M. Farooqi, R. Srivastava, Structural, optical and photoconductivity study of ZnO nanoparticles synthesized by annealing of ZnS nanoparticles. J. Alloy. Compd. 691, 275–286 (2017)

    Article  Google Scholar 

  33. C. Li, C. Han, Y. Zhangb, Z. Zang, M. Wang, X. Tang, J. Du, Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr 3 films. Sol. Energy Mater. Sol. Cells 172, 341–346 (2017)

    Article  CAS  Google Scholar 

  34. N. Wu, Q. Luo, Z. Bao, J. Lin, Y. Li, C. Ma, Zinc oxide: conjugated polymer nanocomposite as cathode buffer layer for solution processed inverted organic solar cells. Sol. Energy Mater. Sol. Cells 141, 248–259 (2015)

    Article  CAS  Google Scholar 

  35. K. Nabil, M. Nazih, O. Rachid, General review and classification of different MPPT techniques. Renew. Sustain. Energy Rev. 68, 1–18 (2017)

    Article  Google Scholar 

  36. E.S. Rodrigues, M.S. Silva, W.M. Azevedo, S. Feitosa, A. Stingl, P.M.A. Farias, ZnO nanoparticles with tunable bandgap obtained by modified Pechini method. Appl. Phys. A 125, 504 (2019)

    Article  CAS  Google Scholar 

  37. A. Stingl, M. Silva, V. Alves, C. Ayala, E. Rodrigues, Method of producing a metal or metal oxide nanoparticle (WO2021046586). 2021. https://worldwide.espacenet.com/patent/search/family/072355731/ publication/WO2021046586A1?q=phornano

  38. Phornano, Verdequant, Zinc oxide. https://www.phornano.com/verdequant (Accessed 15.05.21)

  39. C. Guiot, O. Spalla, Stabilization of TiO2 nanoparticles in complex medium through a pH adjustment protocol. Environ. Sci. Technol. 47, 1057–1064 (2013)

    Article  CAS  Google Scholar 

  40. S. Farooq, C.V.P. Vital, L.A. Gómez-Malagón, R.E. Araujo, D. Rativa, Thermo-optical performance of iron-doped gold nanoshells-based nanofluid on direct absorption solar collectors. Sol. Energy 208, 1181–1188 (2020)

    Article  CAS  Google Scholar 

  41. A. Khorsand Zak, R. Razali, W.H.B. Abd Majid, M. Darroudi, Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int. J. Nanomed. 6, 1399–1403 (2011)

    Article  CAS  Google Scholar 

  42. M. Farooqi, R. Srivastava, Enhanced UV-vis photoconductivity and photoluminescence by doping of samarium in ZnO nanostructures synthesized by solid state reaction method. Optik 127, 3991–3998 (2016)

    Article  CAS  Google Scholar 

  43. F.R. Lamastra, M.L. Grilli, G. Leahu, A. Belardini, R. Li Voti, C. Sibilia, D. Salvatori, I. Cacciotti, F. Nanni, Photoacoustic spectroscopy investigation of zinc oxide/diatom frustules hybrid powders. Int. J. Thermophys. 39, 110 (2018)

    Article  Google Scholar 

  44. K. Znajdek, M. Sibiński, Z. Lisik, A. Apostoluk, Y. Zhu, B. Masenelli, P. Sędzicki, Zinc oxide nanoparticles for improvement of thin film photovoltaic structures’ efficiency through down shifting conversion. Opto-Electron. Rev. 25(2), 99–102 (2017)

    Article  Google Scholar 

  45. G. Fuchs, P. Mélinon, Y. Yan, B. Cabaud, A. Hoareau, M. Treilleux, V. Paillard, Films of controlled nano size grains deposited by low-energy cluster beam. Z Phys D - Atoms, Mol Clusters 26, 249–251 (1993)

    Article  CAS  Google Scholar 

  46. S. Sharma, A. Tran, O. Nalamasu, P.S. Dutta, Spin-coated ZnO thin films using ZnO nano-colloid. J. Elec. Mater. 35, 1237–1240 (2006)

    Article  CAS  Google Scholar 

  47. Grant R. Fowles., 1989. Introduction to modern optics. 2nd edition, p. 99

  48. K. Baryshnikova, M. Petrov, V. Babicheva, P. Belov, Plasmonic and silicon spherical nanoparticle antireflective coatings. Sci. Rep. 6, 22136 (2016)

    Article  CAS  Google Scholar 

  49. N. Shanmugam, R. Pugazhendhi, R. Madurai Elavarasan, P. Kasiviswanathan, N. Das, Anti-reflective coating materials: a holistic review from PV perspective. Energies 13, 2631 (2020)

    Article  CAS  Google Scholar 

  50. S.K. Shah, J. Khan, I. Ullah, Y. Khan, Optimization of active-layer thickness, top electrode and annealing temperature for polymeric solar cells. AIMS Mater. Sci. 4(3), 789–799 (2017)

    Article  Google Scholar 

  51. K. Kumar, U.K. Kumawat, R. Mital, A. Dhawan, Light trapping plasmonic butterfly-wing-shaped nanostructures for enhanced absorption and efficiency in organic solar cells. J. Opt. Soc. Am. B 36, 978–990 (2019)

    Article  CAS  Google Scholar 

  52. O. Cardozo, S. Farooq, A. Stingl, N. Fraidenraich, Investigation of performance of P3HT:PCBM organic photovoltaic module under real operating conditions. Sol. Energy 190, 543–548 (2019)

    Article  Google Scholar 

  53. J. Yun, W. Wang, S. Kim, T. Bae, S. Lee, D. Kim, G. Lee, H. Lee, M. Song, Light trapping in bendable organic solar cells using silica nanoparticle arrays. Energy Environ. Sci. 8, 932–940 (2015)

    Article  CAS  Google Scholar 

  54. W. Tress, (2014). Organic solar cells. In: Organic Solar Cells. Springer Series in Materials Science, vol 208. Springer, Cham. p. 139

  55. A. Peter Amalathas, M.M. Alkaisi, Nanostructures for light trapping in thin film solar cells. Micromachines 10(9), 619 (2019)

    Article  Google Scholar 

  56. F. Piccinno, F. Gottschalk, S. Seeger, B. Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart. Res. 14, 1109 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the National Institute of Science and Technology of Photonics (INCT de Fotônica), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Funding

The authors declare that this project was partially supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olavo Cardozo.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Code availability

The authors declare that they have availability of code reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardozo, O., Farooq, S., Farias, P.M.A. et al. Zinc oxide nanodiffusers to enhance p3ht:pcbm organic solar cells performance. J Mater Sci: Mater Electron 33, 3225–3236 (2022). https://doi.org/10.1007/s10854-021-07524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07524-8

Navigation