Skip to main content
Log in

Influence of R2+ (R = Mg, Ca, Sr) partial substitution for Ba2+ on structures and the thermal properties of BaO–Al2O3–SiO2–B2O3 LTCC materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A combination of dielectric and thermal properties is the prime factor for developing glass–ceramics for practical aspects in low-temperature co-fired ceramic technology. In this work, we report the low melting-point compositions of BaO–Al2O3–SiO2–B2O3 and BaAl2Si2O8 ceramics at 900 °C. The phase evolutions, microstructure, dielectric, and thermal expansion properties corresponding to the partial replacement of Ba2+ with alkaline earth metal ions R2+, i.e., Sr2+, Ca2+, and Mg2+ were investigated. The results indicated that, because the lattice distortion of hexacelsian structure was caused by solid solutions of substitution ions to BaAl2Si2O8 ceramics, the phase transition of hexacelsian can be gradually inhabited with the decrease of the substitution ion radius. Notably, the partial substitution of Mg2+ in the Ba2+ can completely inhibit the phase transition and promote the formation of orthorhombic celsian. By the substitution of 40 mol% of Ba2+ to Mg2+, physical properties, i.e., density of 2.22 g⋅cm−3, εr of 4.08 at 12 GHz, and tanδ of 2.7 × 10−3, are obtained. Importantly, the coefficient of thermal expansion (CTE) of 4.02 × 10−6/°C close to that of monocrystalline silicon is also successfully achieved. The new BaAl2Si2O8 ceramics with low CTE and reliable thermal stability demonstrated the potential for application in chip packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. H.I. Hsiang, C.-C. Chen, S.-Y. Yang, J. Adv. Ceram. (2019). https://doi.org/10.1007/s40145-019-0316-6

    Article  Google Scholar 

  2. M. Wang, L. Fang, M. Li, A. Li, R. Dongol, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2018.11.110

    Article  Google Scholar 

  3. K. Akatsuka, A. Yasumori, K. Maeda, Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2018.12.080

    Article  Google Scholar 

  4. S. Chen, D.G. Zhu, Int. J. Miner. Metall. Mater. (2015). https://doi.org/10.1007/s12613-015-1158-z

    Article  Google Scholar 

  5. K. Kaneko, S. Fujita, H. Adachi, Y. Sugimoto, K. Murayama, Jpn J. Appl. Phys. (2018). https://doi.org/10.7567/JJAP.57.11UE04

    Article  Google Scholar 

  6. J. Zhou, J. Adv. Ceram. (2012). https://doi.org/10.1007/s40145-012-0011-3

    Article  Google Scholar 

  7. Z. Qing, B. Li, H. Li, Y. Li, S. Zhang, J. Mater. Sci. (2014). https://doi.org/10.1007/s10854-014-2150-5

    Article  Google Scholar 

  8. B. Li, B. Tang, M. Xu, J. Electron. Mater. (2015). https://doi.org/10.1007/s11664-015-3859-5

    Article  Google Scholar 

  9. X. Yang, Y. Zhang, S. Ding, L. Huang, X. Zhang, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.08.263

    Article  Google Scholar 

  10. C.M. López-Badillo, J. López-Cuevas, C.A. Gutiérrez-Chavarría, J.L. Rodríguez-Galicia, M.I. Pech-Canul, J. Eur. Ceram. Soc. (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.05.014

    Article  Google Scholar 

  11. H. Mao, X. Chen, F. Wang, W. Zhang, J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-019-03795-z

    Article  Google Scholar 

  12. L. Li, X.-G. Liu, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, Ceram. Int. (2015). https://doi.org/10.1016/j.ceramint.2015.04.043

    Article  Google Scholar 

  13. Y. Kobayashi, Ceram. Int. (2001). https://doi.org/10.1016/S0272-8842(00)00059-6

    Article  Google Scholar 

  14. S. Chen, S. Zhang, X. Zhou, B. Li, J. Mater. Sci. (2010). https://doi.org/10.1007/s10854-010-0121-z

    Article  Google Scholar 

  15. M.M. Krzmanc, M. Valant, D. Suvorov, J. Eur. Ceram. Soc. (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.05.017

    Article  Google Scholar 

  16. K.T. Lee, P.B. Aswath, Mat. Sci. Eng. A (2003). https://doi.org/10.1016/s0921-5093(02)00118-1

    Article  Google Scholar 

  17. M.H. Weng, C.T. Liauh, S.M. Lin, H.H. Wang, R.Y. Yang, Materials (2019). https://doi.org/10.3390/ma12244187

    Article  Google Scholar 

  18. C. Li, S.H. Ding, Y. Zhang, H. Zhu, T.X. Song, J. Eur. Ceram. Soc. (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.12.011

    Article  Google Scholar 

  19. K. Eichler, G. Solow, P. Otschik, W. Schaffrath, J. Eur. Ceram. Soc. (1999). https://doi.org/10.1016/S0955-2219(98)00382-3

    Article  Google Scholar 

  20. S. Wu, L. Xia, B. Shi, G. Wen, J. Eur. Ceram. Soc. (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.09.025

    Article  Google Scholar 

  21. N. Lahl, K. Singh, L. Singheiser, K. Hilpert, D. Bahadur, J. Mater. Sci. (2000). https://doi.org/10.1023/A:1004851418274

    Article  Google Scholar 

  22. M. Casas-Luna, S. Ravaszová, P. Skalka, P. Gejdo, L. Elko, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.06.192

    Article  Google Scholar 

  23. Y. Onodera, Y. Takimoto, H. Hijiya, T. Taniguchi, S. Kohara, NPG Asia Mater. (2019). https://doi.org/10.1038/s41427-019-0180-4

    Article  Google Scholar 

  24. B. Li, Q. Long, D. Duan, J. Mater. Sci. (2015). https://doi.org/10.1007/s10854-015-4096-7

    Article  Google Scholar 

  25. S. Liu, H. Zhang, B. Zhang, X. Zhong, J. Ma, F. Ye, Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.01.119

    Article  Google Scholar 

  26. H. Yang, S.-R. Zhang, Y.-W. Chen, H.-C. Ying, Inorg. Chem. (2019). https://doi.org/10.1021/acs.inorgchem.8b03169

    Article  Google Scholar 

  27. Y. Wang, R.-Z. Zuo, Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.03.208

    Article  Google Scholar 

  28. L. He, B. Yla, A. Qz, W. Jing, D. Khc, J. Eur. Ceram. Soc. (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.047

    Article  Google Scholar 

  29. T.-S. Zhang, L.-B. Kong, Z.-H. Du, J. Ma, S. Li, Scr. Mater. (2010). https://doi.org/10.1016/j.scriptamat.2010.08.023

    Article  Google Scholar 

  30. Q.-F. Zhang, M.-Y. Fan, S.-L. Jiang, Q.-T. Yang, J.-F. Wang, X. Yao, J. Alloy. Compd. (2013). https://doi.org/10.1016/j.jallcom.2012.10.011

    Article  Google Scholar 

  31. Y.-P. Fu, C.-C. Chang, C.-H. Lin, T.-S. Chin, Ceram. Int. (2004). https://doi.org/10.1016/s0272-8842(03)00059-2

    Article  Google Scholar 

  32. L. Yuan, B. Liu, N. Shen, T. Zhai, D.-A. Yang, J. Alloy. Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.01.074

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the cultivation project for original scientific research instruments and equipments of Southwest Jiaotong University [Grant Numbers XJ2021KJZK041].

Author information

Authors and Affiliations

Authors

Contributions

We declare that all authors contributed to the study’s conception and design. The research ideas and guidance for the experiment were provided by Song Chen. Material preparation, data collection, and analysis were performed by Zi-wei Zhou, Yu-xia Lin, and Jing-fei Guo, and the experiment was supervised by Hong-liang Sun and Xiao-song Jiang. The first draft of the manuscript was written by Zi-wei Zhou and the review of the first draft was completed by Song Chen. All authors commented on previous versions of the manuscript and all authors read and approved the final manuscript. Their detailed contributions are as follows: Zi-wei Zhou: Investigation, writing-original draft preparation; Yu-xia Lin: data curation; Jing-fei Guo: formal analysis; Xiao-song Jiang: supervision; Hong-liang Sun: supervision; Song Chen: writing-reviewing, conceptualization, guidance, and methodology.

Corresponding author

Correspondence to Song Chen.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Zw., Lin, Yx., Guo, Jf. et al. Influence of R2+ (R = Mg, Ca, Sr) partial substitution for Ba2+ on structures and the thermal properties of BaO–Al2O3–SiO2–B2O3 LTCC materials. J Mater Sci: Mater Electron 33, 3198–3207 (2022). https://doi.org/10.1007/s10854-021-07521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07521-x

Navigation