Skip to main content

Advertisement

Log in

Anchoring ultrafine molybdenum phosphide on hierarchical three-dimensional CNTs/rGO framework as efficient electrocatalysts for hydrogen evolution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Massive efforts have been made to achieve highly efficient electrocatalytic activity for hydrogen production via water splitting. Here, a three-dimentional (3D) reduced graphene oxide carbon nanotubes (CNTs/rGO) framework for anchoring molybdenum phosphide nanoparticles is reported for hydrogen evolution reaction (HER) with high performance. The enhanced electrocatalytic activity is attributed to the plenty of factors: the hierarchical 3D structure of rGO sheets and CNTs with rich active sites, the uniform distribution of RuP2 nanoparticles, chemical bonding character of RuP2 and carbon support, and the interfacial electric effect among different components. The RuP2 anchored on CNTs/rGO with mass ratio of 5:2 exhibit the low onset potential of -14.7 V vs. RHE and the lowest overpotential of 50.1 mV at 10 mA cm−2 in corrosive acidic electrolyte, which are comparable to those of commercial Pt/C (20 wt%). The CNTs in the CNTs/rGO framework can contribute to the well-distribution of RuP2 and rGO sheets and further facilitate the high-rate electron transfer, which will effectively promote the electrocatalytic activity for HER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code availability

Not applicable.

References

  1. N.D. Laws, B.P. Epps, Hydrokinetic energy conversion: Technology, research, and outlook. Renew. Sust. Energ. Rev. 57, 1245–1259 (2016)

    Article  Google Scholar 

  2. J.J. Spivey, Catalysis in the development of clean energy technologies. Catal. Today 100, 171–180 (2005)

    Article  CAS  Google Scholar 

  3. R. Sipahutar, S.M. Bernas, M.S. Imanuddin, Renewable energy and hydropower utilization tendency worldwide. Renew. Sust. Energ. Rev. 17, 213–215 (2013)

    Article  Google Scholar 

  4. J.A. Turner, Sustainable hydrogen production. Science 305, 972–974 (2004)

    Article  CAS  Google Scholar 

  5. N. Armaroli, V. Balzani, The hydrogen issue. Chem. Sus. Chem. 4, 21–36 (2011)

    Article  CAS  Google Scholar 

  6. J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies. Catal. Today 139, 244–260 (2009)

    Article  CAS  Google Scholar 

  7. Y. Zheng, Y. Jiao, Y.H. Zhu, L.H. Li, H. Yu, Y. Han, Y. Chen, A.J. Du, Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014)

    Article  Google Scholar 

  8. X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015)

    Article  CAS  Google Scholar 

  9. M.Z. Rahman, M.G. Kibria, C.B. Mullins, Metal-free photocatalysts for hydrogen evolution. Chem. Soc. Rev. 49, 1887–1931 (2020)

    Article  CAS  Google Scholar 

  10. N. Dubouis, A. Grimaud, The hydrogen evolution reaction: from material to interfacial descriptors. Chem. Sci. 10, 9165–9181 (2019)

    Article  CAS  Google Scholar 

  11. H. Du, R.M. Kong, X. Guo, F. Qu, J. Li, Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale 10, 21617–21624 (2018)

    Article  CAS  Google Scholar 

  12. H. Xu, H.Y. Shang, C. Wang, Y.K. Du, Ultrafine Pt-based nanowires for advanced catalysis. Adv. Funct. Mater. 30, 2000793 (2020)

    Article  CAS  Google Scholar 

  13. X.S. Wang, Q. He, L. Song, M. Jaroniec, Breaking the volcano-plot limits for Pt-based electrocatalysts by selective tuning adsorption of multiple intermediates. J. Mater Chem. A 7, 13635–13640 (2019)

    Article  CAS  Google Scholar 

  14. F. Guom, Z. Zou, Z. Zhang, T. Zeng, Y. Tan, R. Chen, W. Wu, N.C. Cheng, X.L. Sun, Confined sub-nanometer PtCo clusters as a highly efficient and robust electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. 9, 5468–5474 (2021)

    Article  Google Scholar 

  15. C.J. Li, Y. Xu, D. Yang, D.D. Yang, X.J. Chai, Z.Q. Wang, Boosting electrocatalytic activities of Pt-based mesoporous nanoparticles for overall water splitting by a facile Ni, P Co-incorporation strategy. ACS Sustain. Chem. Eng. 7, 9709–9716 (2019)

    Article  CAS  Google Scholar 

  16. Y.D. Niu, X. Qian, C. Xu, H.Y. Liu, W.M. Wu, L.X. Hou, Cu-Ni-CoSex quaternary porous nanocubes as enhanced Pt-free electrocatalysts for highly efficient dye-sensitized solar cells and hydrogen evolution in alkaline medium. Chem. Eng. J. 357, 11–20 (2019)

    Article  CAS  Google Scholar 

  17. B. Owens-Baird, Structure-activity relationships for Pt-free metal phosphide hydrogen evolution electrocatalysts. Chem. Eur. J. 24, 7298–7311 (2018)

    Article  CAS  Google Scholar 

  18. M.D. Bhatt, J.Y. Lee, Advancement of platinum (Pt)-free (non-Pt precious metals) and/or metal-free (non-precious-metals) electrocatalysts in energy applications: a review and perspectives. Energy Fuel 34, 6634–6695 (2020)

    Article  Google Scholar 

  19. Y. Liu, X. Li, Q.H. Zhang, W.D. Li, Y. Xie, H.Y. Liu, L. Shang, Z.Y. Liu, Z.M. Chen, L. Gu, Z.Y. Tang, T.R. Zhang, S.Y. Lu, A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem. Int. Ed. 59, 1718–1726 (2020)

    Article  CAS  Google Scholar 

  20. L. Bai, Z.Y. Duan, X.D. Wen, R. Si, Q.Q. Zhang, J.Q. Guan, Highly dispersed ruthenium-based multifunctional electrocatalyst. ACS Catal. 9, 9897–9904 (2019)

    Article  CAS  Google Scholar 

  21. S.Y. Bae, J. Mahmood, I.Y. Jeon, J.B. Baek, Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz. 5, 43–56 (2020)

    Article  CAS  Google Scholar 

  22. W.D. Li, Z.H. Wei, B.Y. Wang, Y. Liu, H.Q. Song, Z.Y. Tang, B. Yang, S.Y. Lu, Carbon quantum dots enhanced the activity for the hydrogen evolution reaction in ruthenium-based electrocatalysts. Mater. Chem. Front. 4, 277–284 (2020)

    Article  CAS  Google Scholar 

  23. T.J. Qiu, Z.B. Liang, W.H. Guo, S. Gao, C. Qu, H. Tabassum, H. Zhang, B.J. Zhu, R.Q. Zou, Y. Shao-Horn, Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting. Nano Energy 58, 1–10 (2019)

    Article  CAS  Google Scholar 

  24. J.W. Su, Y. Yang, G.L. Xia, J.T. Chen, P. Jiang, Q.W. Chen, Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 8, 16028 (2017)

    Article  CAS  Google Scholar 

  25. H. Song, T. Cheng, B. Li, Y. Fan, B. Liu, Z. Tang, S. Lu, Carbon dots and RuP2 nanohybrid as an efficient bifunctional catalyst for electrochemical hydrogen evolution reaction and hydrolysis of ammonia borane. ACS Sustainable Chem. Eng. 8, 3995–4002 (2020)

    Article  CAS  Google Scholar 

  26. J.S. Li, M.J. Huang, Y.W. Zhou, X.N. Chen, S. Yang, J.Y. Zhu, G.D. Liu, L.J. Ma, S.H. Cai, J.Y. Han, RuP2-based hybrids derived from MOFs: highly efficient pH-universal electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 9, 12276–12282 (2021)

    Article  CAS  Google Scholar 

  27. J.S. Li, J.Y. Li, M.J. Huang, L.X. Kong, Z.X. Wu, Anchoring RuxP on 3D hollow graphene nanospheres as efficient and pH-universal electrocatalysts for the hydrogen evolution reaction. Carbon 161, 44–50 (2020)

    Article  CAS  Google Scholar 

  28. Z.H. Pu, I.S. Amiinu, Z.K. Kou, W.Q. Li, S.C. Mu, RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem. Int. Ed. 56, 11559–11564 (2017)

    Article  CAS  Google Scholar 

  29. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  CAS  Google Scholar 

  30. X. Huang, X.Y. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)

    Article  CAS  Google Scholar 

  31. V. Berry, Impermeability of graphene and its applications. Carbon 62, 1–10 (2013)

    Article  CAS  Google Scholar 

  32. S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)

    Article  CAS  Google Scholar 

  33. Y. Wang, S.S. Li, H.Y. Yang, J. Luo, Progress in the functional modification of graphene/graphene oxide: A review. RSC. Adv. 10, 15328–15345 (2020)

    Article  Google Scholar 

  34. R. Tarcan, O. Todor-Boer, I. Petrovai, C. Leordean, S. Astilean, L. Botiz, Reduced graphene oxide today. J. Mater. Chem. C 8, 1198–1224 (2020)

    Article  CAS  Google Scholar 

  35. J. Yan, G. Zhi, D.Z. Kong, H. Wang, T.T. Xu, J.H. Zang, W.X. Shen, J.M. Xu, Y.M. Shi, S.G. Dai, X.J. Li, Y. Wang, 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode. J. Mater. Chem. A 8, 19843–19854 (2020)

    Article  CAS  Google Scholar 

  36. M. Chen, Z. Liu, X. Zhang, A. Zhong, W. Qin, W. Liu, Y. Liu, In-situ phosphatizing of cobalt-molybdenum nanosheet arrays on self-supporting rGO/CNTs film as efficient electrocatalysts for hydrogen evolution reaction. Chem. Eng. J. 422, 130355 (2021)

    Article  CAS  Google Scholar 

  37. C. Tang, K. Zhao, Y.F. Tang, F.P. Li, Q.N. Meng, Forest-like carbon foam templated rGO/CNTs/MnO2 electrode for high-performance supercapacitor. Electrochim. Acta 375, 137960 (2021)

    Article  CAS  Google Scholar 

  38. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  39. X.L. Li, Y.Q. Liu, L. Fu, L.C. Cao, D.C. Wei, Y. Wang, Efficient synthesis of carbon nanotube–nanoparticle hybrids. Adv. Funct. Mater. 16, 2431–2437 (2006)

    Article  CAS  Google Scholar 

  40. E. Picheau, A. Impellizzeri, D. Rybkovskiy, M. Bayle, J.Y. Mevellec, F. Hof, H. Saadaoui, L. Noe, A.C.T. Dias, J.L. Duvail, Intense Raman D band without disorder in flattened carbon nanotubes. ACS Nano 15, 596–603 (2021)

    Article  CAS  Google Scholar 

  41. H.Q. Song, Y.J. Cheng, B.J. Li, Y.P. Fan, B.Z. Liu, Z.Y. Tang, S.Y. Lu, Carbon dots and RuP2 nanohybrid as an efficient bifunctional catalyst for electrochemical hydrogen evolution reaction and hydrolysis of ammonia borane. ACS Sust. Chem. Eng. 8, 3995–4002 (2020)

    Article  CAS  Google Scholar 

  42. T. Liu, S. Wang, Q. Zhang, L. Chen, W. Hu, C.M. Li, Ultrasmall Ru2P nanoparticles on graphene: a highly efficient hydrogen evolution reaction electrocatalyst in both acidic and alkaline media. Chem. Commun. 54, 3343–3346 (2018)

    Article  CAS  Google Scholar 

  43. C.H. Liu, L. Sun, L.L. Luo, W.C. Wang, H.L. Dong, Z.D. Chen, Integration of Mo2C/MoC heterojunction for multi-process strategy toward highly-active hydrogen evolution in acidic and alkaline conditions. ACS Appl. Mater. Interface 13, 22646–22654 (2021)

    Article  CAS  Google Scholar 

  44. Y. Wang, Z. Ge, X. Li, J.P. Zhao, B. Ma, Y.T. Chen, Cu2S nanorod arrays with coarse surfaces to enhance the electrochemically active surface area for water oxidation. J. Colloid Interface Sci. 567, 308–315 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge financial support from National Natural Science Foundation of China (22178031) , Projects of International Cooperation and Exchanges of Changzhou (CZ20210036), Scientific Research Foundation of Jiangsu Provincial Education Department (21KJA480001), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Qinglan Project Foundation of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

LL, ZL, and LZ contribute to the preparation and data collections. WX and TZ contribute to the materials characterizations. CL and ZC contribute to the critical revision, Project administration, and Funding acquisition.

Corresponding authors

Correspondence to Changhai Liu or Zhidong Chen.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Liu, C., Li, Z. et al. Anchoring ultrafine molybdenum phosphide on hierarchical three-dimensional CNTs/rGO framework as efficient electrocatalysts for hydrogen evolution. J Mater Sci: Mater Electron 33, 3175–3185 (2022). https://doi.org/10.1007/s10854-021-07519-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07519-5

Navigation