Skip to main content

Advertisement

Log in

Photovoltaic performance of Cu2ZnSnS4 thin film solar cells on flexible molybdenum foil formed by electrodeposition and sulfurization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The photovoltaic performance of CZTS film solar cells grown via electrodeposition and sulfurization was investigated using citrate (acidic electrolyte) or potassium pyrophosphate (alkaline electrolyte)-based electrolytes to investigate the influence of deposition on the final layer quality. The desired composition of Zn-rich and Cu-poor compact layers were obtained from both of the electrolytes, with 1–3.5 at.% standard deviation over 2 cm2 Mo foils. The precursors were transformed into CZTS after sulfurization at 500 °C for 1 h. The standard deviation of the metals decreased to 0.9–1.4 at.% after sulfurization. The major phase volume of the film is CZTS, with some binary sulfide and ternary tin sulfide secondary phases, according to XRD and Raman spectroscopy analyses. CZTS absorber layer films on flexible Mo foil were manufactured in solar cells with the following architecture: Al:Ni/ITO/ZnO/CdS/CZTS/Mo. For both electrolytes, we investigated the precursor composition deviation and the efficiency of the solar cell device; a correlation between composition and conversion efficiency was found. Zn-rich and Cu-poor regions resulted in relatively higher fill factor, open-circuit voltage, and efficiency (η), whereas Sn-rich and Cu-rich regions showed an excess of binary and ternary secondary phases for CZTS layers grown from both electrolytes. The highest efficiency obtained for CZTS_Citrate was 0.64% and CZTS_Pyro was 0.24%. Efficiency losses were attributed to recombination in the bulk film and at the back contact, due to the presence of secondary phases and MoS2, according to time-resolved photoluminescence and photoresponse studies determined by the external quantum efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Kar, H.W. Hillhouse, R. Agrawal, Chemical liquid deposition of CuInSe2 and CuIn (S, Se)2 films for solar cells. Thin Solid Films 520, 5431–5437 (2012). https://doi.org/10.1016/j.tsf.2012.04.012

    Article  CAS  Google Scholar 

  2. I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, Co-evaporated Cu2ZnSnSe4 films and devices. Sol Energy Mater Sol Cells. 101, 154–159 (2012). https://doi.org/10.1016/j.solmat.2012.01.008

    Article  CAS  Google Scholar 

  3. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ Sci 8, 3134–3159 (2015). https://doi.org/10.1039/C5EE02153G

    Article  CAS  Google Scholar 

  4. Berg DM (2012) Kesterite equilibrium reaction and the discrimination of secondary phases from Cu2ZnSnS4, Dr. Thesis, 187.

  5. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv Energy Mater 4, 1–5 (2014). https://doi.org/10.1002/aenm.201301465

    Article  CAS  Google Scholar 

  6. T. Todorov, H.W. Hillhouse, S. Aazou, Z. Sekkat, S.D. Deshmukh, R. Agrawal, S. Bourdais, M. Valdés, P. Arnou, D.B. Mitzi, P.J. Dale, Solution-based synthesis of kesterite thin film semiconductors. J. Phys Energy 2, 012003 (2020)

    Article  CAS  Google Scholar 

  7. T. Schnabel, T. Abzieher, T.M. Friedlmeier, E. Ahlswede, Solution-based preparation of Cu2ZnSn (S, Se)4 for solar cells—comparison of SnSe2 and elemental Se as Chalcogen source. IEEE J Photovolt 5, 670–675 (2015)

    Article  Google Scholar 

  8. D. Wang, W. Zhao, Y. Zhang, S. Frank, Path towards high-efficient kesterite solar cells. J Energy Chem. 27, 1040–1053 (2018). https://doi.org/10.1016/j.jechem.2017.10.027

    Article  Google Scholar 

  9. M.I. Khalil, R. Bernasconi, A. Lucotti, L.A. Donne, R.A. Mereu, J.L. Hart, M.L. Taheri, L. Nobili, L. Magagnin, CZTS thin film solar cells on flexible Molybdenum foil by electrodeposition—annealing route. J Appl Electrochem 51, 209–218 (2021). https://doi.org/10.1007/s10800-020-01494-1

    Article  CAS  Google Scholar 

  10. S. Azmi, A. Moujib, O.A. Layachi, E. Matei, A.C. Galca, M.Y. Zaki, M. Secu, M.I. Rusu, C.E.A. Grigorescu, E.M. Khoumri, Towards phase pure kesterite Cu2ZnSnS4 absorber layers growth via single step free sulfurization electrodeposition under a fi x applied potential on Mo substrate. J. Alloys Compd. 842, 155821 (2020). https://doi.org/10.1016/j.jallcom.2020.155821

    Article  CAS  Google Scholar 

  11. R. Boudaira, O. Meglali, A. Bouraiou, N. Attaf, C. Sedrati, M.S. Aida, O. Meglali, A. Bouraiou, N. Attaf, C. Sedrati, M.S. Aida, Optimization of sulphurization temperature for the production of single-phase CZTS kesterite layers synthesized by electrodeposition. Surf Eng (2020). https://doi.org/10.1080/02670844.2020.1758013

    Article  Google Scholar 

  12. M.I. Khalil, R. Bernasconi, S. Ieffa, A. Lucotti, A. Le Donne, S. Binetti, L. Magagnin, Effect of co-electrodeposited Cu-Zn-Sn precursor compositions on sulfurized CZTS thin films for solar cell M I Khalil. ECS Trans. 64, 33–41 (2015)

    Article  CAS  Google Scholar 

  13. Xu J, Cao Z, Yang Y (2015) Characterization of Cu2ZnSnS4 thin films on flexible metal foil substrates, 726–733. https://doi.org/10.1007/s10854-014-2456-3.

  14. Marchi C, Panzeri G, Pedrazzetti L, Khalil MI, Lucotti A, Parravicini J, Acciarri M, Binetti S (2021) One-step CZT electroplating from alkaline solution on flexible Mo foil for CZTS absorber, 1807–1813

  15. W. Jeong, K. Kim, J. Kim, H.K. Park, J. Min, J. Lee, S. Mun, S. Kim, J. Jang, W. Jo, D. Lee, Impact of Na doping on the carrier transport path in polycrystalline flexible Cu2ZnSn ( S, Se ). J Solar Cells 1903085, 1–9 (2020). https://doi.org/10.1002/advs.201903085

    Article  CAS  Google Scholar 

  16. J. Xu, S. Shang, J. Yang, J. Liu, S. Jiang, Effect of sodium-doping on the performance of CZTS absorb layer: Single and bifacial sodium-incorporation method. Sol. Energy. 221, 476–482 (2021). https://doi.org/10.1016/j.solener.2021.04.063

    Article  CAS  Google Scholar 

  17. Y. Zhang, J. Liu, C.G. Energy, C. Liao, J. Han, Earth-abundant and low-cost CZTS solar cell on flexible molybdenum foil. Surface (2014). https://doi.org/10.1039/c4ra02064b

    Article  Google Scholar 

  18. L. Tsui, M. Mibus, B. Unveroglu, G. Zangari, Electrochemical deposition of binary alloys: effect of gravity on composition, morphology and dendritic growth. Int J Microgravity 33, 1–9 (2016)

    Google Scholar 

  19. T. Maeda, A. Kawabata, T. Wada, First-principles study on alkali-metal effect of Li, Na, and K in Cu2 ZnSnS4 and Cu2 ZnSnSe4. Phys Status Solidi 12, 631–637 (2015). https://doi.org/10.1002/pssc.201400345

    Article  CAS  Google Scholar 

  20. M. Johnson, S.V. Baryshev, E. Thimsen, M. Manno, X. Zhang, I.V. Veryovkin, C. Leighton, E.S. Aydil, Alkali-metal-enhanced grain growth in Cu2 ZnSnS4 thin films. Energy Environ. Sci 7, 1931–1938 (2014). https://doi.org/10.1039/C3EE44130J

    Article  CAS  Google Scholar 

  21. B. Unveroglu, G. Zangari, Towards phase pure kesterite CZTS films via Cu-Zn-Sn electrodeposition followed by sulfurization. Electrochim Acta 219, 664–672 (2016). https://doi.org/10.1016/j.electacta.2016.10.079

    Article  CAS  Google Scholar 

  22. B. Unveroglu, G. Zangari, Effect of cell con fi guration on the compositional homogeneity of electrodeposited Cu-Zn-Sn alloys and phase purity of the resulting Cu2 ZnSnS4 absorber layers. Electrochim Acta 255, 347–357 (2017). https://doi.org/10.1016/j.electacta.2017.08.155

    Article  CAS  Google Scholar 

  23. Ramanathan K, Keane J, Noufi R, Vista LB (2005) Properties of high-efficiency CIGS thin-film solar cells.In: 31st IEEE photovoltaics spec conf exhib, Florida., Natl. Renew. Energy Lab. Report

  24. Ramanathan K, Wiesner H, Asher S, Niles D, Bhattacharya RN (1998) High-efficiency Cu (In, Ga) Se 2 thin film solar cells without intermediate buffer layers

  25. C.J. Hages, A. Redinger, S. Levcenko, H. Hempel, M.J. Koeper, R. Agrawal, D. Greiner, C.A. Kaufmann, T. Unold, Identifying the real minority carrier lifetime in nonideal semiconductors: a case study of kesterite materials. Adv. Energy Mater. 1700167, 1700167 (2017). https://doi.org/10.1002/aenm.201700167

    Article  CAS  Google Scholar 

  26. W. Li, Z. Su, J. Ming, R. Tan, S.Y. Chiam, H.L. Seng, S. Magdassi, L.H. Wong, Revealing the role of potassium treatment in CZTSSe thin film. Solar Cells (2017). https://doi.org/10.1021/acs.chemmater.7b00418

    Article  Google Scholar 

  27. Z. Tong, C. Yan, Z. Su, F. Zeng, J. Yang, Y. Li, L. Jiang, Y. Lai, F. Liu, Effects of potassium doping on solution processed kesterite Cu2ZnSnS4 thin film solar cells. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4903500

    Article  Google Scholar 

  28. J.J.S. Scragg, L. Choubrac, A. Lafond, T. Ericson, C. Platzer-Björkman, A low-temperature order-disorder transition in Cu2ZnSnS4 thin films. Appl. Phys. Lett. 104, 041911–041914 (2014). https://doi.org/10.1063/1.4863685

    Article  CAS  Google Scholar 

  29. J.J. Scragg, T. Ericson, T. Kubart, M. Edoff, C. Platzer-Björkman, Chemical insights into the instability of Cu2ZnSnS4 films during annealing. Chem. Mater. 23, 4625–4633 (2011). https://doi.org/10.1021/cm202379s

    Article  CAS  Google Scholar 

  30. V. Piacente, S. Foglia, P. Scardala, Sublimation study of the tin sulphides SnS2, Sn2S3 and SnS. J. Alloys Compd. 177, 17–30 (1991). https://doi.org/10.1016/0925-8388(91)90053-X

    Article  CAS  Google Scholar 

  31. L. Yao, J. Ao, M.J. Jeng, J. Bi, S. Gao, G. Sun, Q. He, Z. Zhou, Y. Sun, L.B. Chang, A CZTSe solar cell with 8.2% power conversion efficiency fabricated using electrodeposited Cu/Sn/Zn precursor and a three-step selenization process at low Se pressure. Sol Energy Mater Sol Cells 159, 318–324 (2017). https://doi.org/10.1016/j.solmat.2016.09.028

    Article  CAS  Google Scholar 

  32. A. Tang, Z. Li, F. Wang, M. Dou, Y. Pan, J. Guan, One step electrodeposition of Cu2ZnSnS4 thin films in a novel bath with sulfurization free annealing. Appl Surf Sci 402, 70–77 (2017). https://doi.org/10.1016/j.apsusc.2017.01.079

    Article  CAS  Google Scholar 

  33. J. Zhi, W. Shurong, L. Zhishan, Y. Min, L. Sijia, L. Yilei, Z. Qichen, H. Ruiting, Effects of temperature-time profile on Cu2ZnSnS4 films and cells based on sulfur-contained precursors. Mater Sci Semicond Process. 57, 239–243 (2017). https://doi.org/10.1016/j.mssp.2016.10.035

    Article  CAS  Google Scholar 

  34. Gupta GK, Dixit A (2016) Room temperature electrical properties of solution derived p-type Cu2ZnSnS4 thin films. In: AIP conference proceeding 020678. https://doi.org/10.1063/1.4946729.

  35. A. Guchhait, Z. Su, Y.F. Tay, S. Shukla, W. Li, S.W. Leow, J.M.R. Tan, S. Lie, O. Gunawan, L.H. Wong, Enhancement of open-circuit voltage of solution-processed Cu2ZnSnS4 solar cells with 7.2% efficiency by Incorporation of Silver. ACS Energy Lett. 1, 1256–1261 (2016). https://doi.org/10.1021/acsenergylett.6b00509

    Article  CAS  Google Scholar 

  36. C. Yan, K. Sun, J. Huang, S. Johnston, F. Liu, B.P. Veettil, K. Sun, A. Pu, F. Zhou, J.A. Stride, M.A. Green, X. Hao, Beyond 11% efficient sulfide kesterite Cu2ZnxCd1–xSnS4 solar cell: effects of cadmium alloying. ACS Energy Lett. (2017). https://doi.org/10.1021/acsenergylett.7b00129

    Article  Google Scholar 

  37. O. Gunawan, T.K. Todorov, D.B. Mitzi, Loss mechanisms in hydrazine-processed Cu2ZnSn(Se, S)4 solar cells. Appl Phys Lett 97, 233506 (2010). https://doi.org/10.1063/1.3522884

    Article  CAS  Google Scholar 

  38. J. Ge, J. Chu, Y. Yan, J. Jiang, P. Yang, Co-electroplated kesterite bifacial thin-film solar cells: a study of sulfurization temperature. ACS Appl Mater Interfaces 7, 10414–10428 (2015). https://doi.org/10.1021/acsami.5b01641

    Article  CAS  Google Scholar 

  39. K. Woo, Y. Kim, W. Yang, K. Kim, I. Kim, Y. Oh, J.Y. Kim, J. Moon, Band-gap-graded Cu2ZnSn(S1–x, Sex)4 solar cells fabricated by an ethanol-based, particulate precursor ink route. Sci. Rep. 3, 1–7 (2013). https://doi.org/10.1038/srep03069

    Article  Google Scholar 

  40. G.K. Dalapati, S. Zhuk, S. Masudy-Panah, A. Kushwaha, H.L. Seng, V. Chellappan, V. Suresh, Z. Su, S.K. Batabyal, C.C. Tan, A. Guchhait, L.H. Wong, T.K.S. Wong, S. Tripathy, Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells. Sci. Rep. 7, 1–12 (2017). https://doi.org/10.1038/s41598-017-01605-7

    Article  CAS  Google Scholar 

  41. S. Siebentritt, S. Schorr, Kesterites — a challenging material for solar cells. Prog. Photovoltaics Res. Appl. (2012). https://doi.org/10.1002/pip

    Article  Google Scholar 

  42. S. Chen, X. Gong, A. Walsh, S.-H. Wei, Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds. Phys. Rev. B. 79, 165211 (2009). https://doi.org/10.1103/PhysRevB.79.165211

    Article  CAS  Google Scholar 

  43. C. Malerba, F. Biccari, C. Leonor, A. Ricardo, M. Valentini, R. Chierchia, M. Müller, A. Santoni, E. Esposito, P. Mangiapane, P. Scardi, A. Mittiga, CZTS stoichiometry effects on the band gap energy. J. Alloys Compd. 582, 528–534 (2014). https://doi.org/10.1016/j.jallcom.2013.07.199

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by the NSF Grant CMMI#1131571. BU was funded by the Republic of Turkey Ministry of National Education. The fabrication of the solar cells and their characterization, including current density–voltage (J–V) curve measurements, time-resolved photoluminescence (TRPL), and external quantum efficiency (EQE) have been performed at the Agrawal Laboratories in Purdue University. The authors thank Mark Koeper for solar cell fabrication and experiments. The Hall measurements have been performed in Mool C. Gupta Group in the Department of Electrical and Computer Engineering at the University of Virginia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Begum Unveroglu.

Ethics declarations

Conflict of interest

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1751 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unveroglu, B., Zangari, G. Photovoltaic performance of Cu2ZnSnS4 thin film solar cells on flexible molybdenum foil formed by electrodeposition and sulfurization. J Mater Sci: Mater Electron 33, 3101–3114 (2022). https://doi.org/10.1007/s10854-021-07513-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07513-x

Navigation