Skip to main content
Log in

Fabrication of a TiC0.5O0.5 anode using the carbothermal method under a non-vacuum atmosphere and its application in metal titanium electrolysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiC0.5O0.5 was prepared through the carbothermal reduction of TiO2 under a flowing argon atmosphere, and then, it was used as an anode to prepare titanium metal through electrolysis in molten NaCl-KCl salt. The conductivities of the TiC0.5O0.5 samples at temperatures of 65.5–768.2 °C were investigated using the four-probe method, and the chemical valence of TiC0.5O0.5 was analyzed via X-ray photoelectron spectroscopy. Cyclic voltammetry and square-wave voltammetry were used to analyze the molten salt after electrolysis. The results show that the electrical conductivities of TiC0.5O0.5 are as high as 1.94 × 105 S·m−1 at 65.5 °C and 1.06 × 105 S·m−1 at 768.2 °C, suggesting that TiC0.5O0.5 can maintain good conductivity under high temperatures. There are Ti (II)–C, C–Ti (III)–O, and Ti (IV)–O bonds in the TiC0.5O0.5 structure. High-purity titanium powder was fabricated successfully via electrolysis at a voltage of 3.0 V for 4 h at 750 °C. The number of electrons transferred to the cathode during the reduction process was calculated to be 2.01 and 3.43, which corresponds, respectively, to the reduction reactions from Ti2+ and Ti3+/Ti4+ to titanium metal based on the results of square-wave voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. G. Lütjering, J.C. Willliams, Titanium (Springer, Berlin, 2003), pp. 15–16

    Book  Google Scholar 

  2. T. Mu, F. Zhu, B. Deng, Mater. Trans. 58, 535–538 (2017)

    Article  CAS  Google Scholar 

  3. W. Kroll, Trans. Electrochem. Soc. 78, 35 (1940)

    Article  Google Scholar 

  4. G.Z. Chen, D.J. Fray, T.W. Farthing, Nature 407, 361–364 (2000)

    Article  CAS  Google Scholar 

  5. S.I. Pyosuke, O. Suzuki, Metall. Mater. Trans. B 34B, 277–285 (2003)

    Google Scholar 

  6. O.L.J. Wither, US Patent 20050166706. (2004)

  7. S. Takeuchi, O. Watanabe, J. Jpn. Inst. Met. 28, 627–632 (1964)

    Article  CAS  Google Scholar 

  8. Y. Hashimoto, J. Jpn. Inst. Met. 32, 1327–1334 (1968)

    Article  CAS  Google Scholar 

  9. S. Jiao, H. Zhu, J. Mater. Res. 21, 2172–2175 (2006)

    Article  CAS  Google Scholar 

  10. S. Jiao, H. Zhu, J. Alloys Compd. 438, 243–246 (2007)

    Article  CAS  Google Scholar 

  11. C. Wu, M. Tan, G. Ye, D.J. Fray, X. Jin, A.C.S. Sustain, Chem. Eng. 7, 8340–8346 (2019)

    CAS  Google Scholar 

  12. B. Jiang, J. Xiao, K. Huang, J. Hou, S. Jiao, H. Zhu, J. Am. Ceram. Soc. 100, 2253–2265 (2017)

    Article  CAS  Google Scholar 

  13. A. Afir, M. Achour, N. Saoula, J. Alloys Compd. 288, 124–140 (1999)

    Article  CAS  Google Scholar 

  14. A. Maitre, D. Tetard, P. Lefort, J. Eur. Ceram. Soc. 20, 15–22 (2000)

    Article  CAS  Google Scholar 

  15. K. Fu, F. Zhou, B. Liao, X. Wu, J. Yu, M. Ying, H. Zhou, X. Zhang, Ceram. Int. 41, 1701–1709 (2015)

    Article  CAS  Google Scholar 

  16. J. Xiong, S. Xiong, Z. Guo, M. Yang, J. Chen, H. Fan, Ceram. Int. 38, 1815–1821 (2012)

    Article  CAS  Google Scholar 

  17. O. Akhavan, E. Ghaderi, J. Phys. Chem. C. 113, 20214–20220 (2009)

    Article  CAS  Google Scholar 

  18. L. Huang, L. Ai, M. Wang, J. Jiang, S. Wang, Int. J. Hydrog. Energy 44, 965–976 (2019)

    Article  CAS  Google Scholar 

  19. C. Lu, L. Yang, B. Yan, L. Sun, P. Zhang, W. Zhang, Z. Sun, Adv. Funct. Mater. 30, 2000852 (2020)

    Article  CAS  Google Scholar 

  20. D.-Y. Kim, B.N. Joshi, J.-J. Park, J.-G. Lee, Y.-H. Cha, T.-Y. Seong, S. In Noh, H.-J. Ahn, S.S. Al-Deyabe, S.S. Yoon, Ceram. Int. 40, 11089–11097 (2014)

    Article  CAS  Google Scholar 

  21. Q. Qin, Y. Zhao, M. Schmallegger, T. Heil, J. Schmidt, R. Walczak, G. Gescheidt-Demner, H. Jiao, M. Oschatz, Angew. Chem. Int. Ed. 58, 13101–13106 (2019)

    Article  CAS  Google Scholar 

  22. A.M. Jastrzębska, A. Szuplewska, A. Rozmysłowska-Wojciechowska, M. Chudy, A. Olszyna, M. Birowska, M. Popielski, J.A. Majewski, B. Scheibe, V. Natu, M.W. Barsoum, 2D Mater. 7, 025018 (2020)

    Article  Google Scholar 

  23. L. Calvillo, G. Garcia, A. Paduano, O. Guillen-Villafuerte, C. Valero-Vidal, A. Vittadini, M. Bellini, A. Lavacchi, S. Agnoli, A. Martucci, J. Kunze-Liebhauser, E. Pastor, G. Granozzi, A.C.S. Appl, Mater. Interfaces 8, 716–725 (2016)

    Article  CAS  Google Scholar 

  24. X. Ning, H. Åsheim, H. Ren, S. Jiao, H. Zhu, Metall. Mater. Trans. B 42, 1181–1187 (2011)

    Article  CAS  Google Scholar 

  25. L.P. Polyakova, P. Taxil, E.G. Polyakov, J. Alloys Compd. 359, 244–255 (2003)

    Article  CAS  Google Scholar 

  26. J.H. Christie, J.A. Turner, R.A. Osteryoung, Anal. Chem. 49, 1899–1903 (1977)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank financial support from the Programs for Natural Science Foundation of Guangxi (2019GXNSFAA185013), Science and Technology Major Project of Guangxi Province (AA18118030), and Guangxi Key Laboratory Development Foundation (GXYSSF1802).

Author information

Authors and Affiliations

Authors

Contributions

WL: performing the experiments, data collection and analysis, writing initial draft. BZ: data collection. HL: performing the experiments, TF: guidance. WL: guidance. FG: conceptualization, methodology, resources, supervision, validation, review and revised manuscript, financial support for the project.

Corresponding author

Correspondence to Feng Gao.

Ethics declarations

Conflicts of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, W., Zou, B., Li, H. et al. Fabrication of a TiC0.5O0.5 anode using the carbothermal method under a non-vacuum atmosphere and its application in metal titanium electrolysis. J Mater Sci: Mater Electron 33, 3045–3052 (2022). https://doi.org/10.1007/s10854-021-07506-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07506-w

Navigation