Skip to main content

Advertisement

Log in

Synergistically enhanced electrocatalytic activity of cerium oxide/manganese tungstate composite for oxygen reduction reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Noble metal-free and earth abundant metals were considered as promising candidates for the development of electrocatalysts towards oxygen reduction reaction (ORR) to achieve large-scale practical applications for metal air batteries and fuel cells. Significant problems remain in the synthesis of low-cost electrocatalysts using a simple and scalable technique. Numerous materials are designed to improve the ORR performance. Due to the oxygen storage and releasing capacity as well as the flexible transformation between Ce3+ and 4+, the CeO2 based catalyst plays an essential role in ORR. Thus, in the present work, we synthesized CeO2/MnWO4 via a two-step synthesis route for ORR. The CeO2/MnWO4-2 composite exhibits superior catalytic activity towards ORR than CeO2, CeO2/MnWO4-1 and CeO2/MnWO4-3. The enhanced ORR performance was attributed to the synergistic interaction between CeO2 and MnWO4. Also, this work highlights the boosted performance of CeO2-based materials by interface tuning, and it could pave the way for the development of efficient noble metal free electrocatalysts for energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.M. Mohideen, Y. Liu, S. Ramakrishna, Appl. Energy (2020). https://doi.org/10.1016/j.apenergy.2019.114027

    Article  Google Scholar 

  2. A. Junaida, A. Aziz, N. Akidah, M. Rao, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.06.176

    Article  Google Scholar 

  3. T. Sadhasivam, G. Palanisamy, S. Roh, Int. J. Hydrogen Energy (2018). https://doi.org/10.1016/j.ijhydene.2018.08.035

    Article  Google Scholar 

  4. N. Tian, B. An, L. Xiao, D. Yang, R. Huang, Y. Xia, J. Zhi, Y. Zhou, S. Gang, Electrochem. Energ. Rev. 12, 45–59 (2019). https://doi.org/10.1007/s41918-018-0004-1

    Article  CAS  Google Scholar 

  5. F. Wang, Q. Zhang, Z. Rui, J. Li, J. Liu, ACS Appl. Mater. Interfaces (2020). https://doi.org/10.1021/acsami.0c06951

    Article  Google Scholar 

  6. M. Shao, Q. Chang, J. Dodelet, R. Chenitz, Chem. Rev. (2016). https://doi.org/10.1021/acs.chemrev.5b00462

    Article  Google Scholar 

  7. Y. Wang, N. Zhao, B. Fang, H. Li, X.T. Bi, H. Wang, Chem. Rev. (2015). https://doi.org/10.1021/cr500519c

    Article  Google Scholar 

  8. Z. Liang, H. Zheng, R. Cao, Sustain. Energy Fuels (2020). https://doi.org/10.1039/D0SE00271B

    Article  Google Scholar 

  9. Z. Xu, H. Zhao, J. Liang, Y. Wang, T. Li, Y. Luo, X. Shi, S. Lu, Z. Feng, Q. Wu, X. Sun, Mater. Today Phys. (2020). https://doi.org/10.1016/j.mtphys.2020.100280

    Article  Google Scholar 

  10. E.F. Holby, Curr. Opin. Electrochem. (2021). https://doi.org/10.1016/j.coelec.2020.08.013

    Article  Google Scholar 

  11. V.R. Jothi, K. Karuppasamy, T. Maiyalagan, H. Rajan, C. Jung, S. Yi, Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201904020

    Article  Google Scholar 

  12. R. Bose, K. Karuppasamy, P. Arunkumar, G.K. Veerasubramani, S. Gayathri, P. Santhoshkumar, D. Vikraman, J. Han, H. Kim, A. Alfantazi, ACS Sustain. Chem. Eng. (2021). https://doi.org/10.1021/acssuschemeng.1c05728

    Article  Google Scholar 

  13. K. Karuppasamy, R. Bose, V.R. Jothi, D. Vikraman, Y. Jeong, P. Arunkumar, D.B. Velusamy, T. Maiyalagan, A. Alfantazi, H. Kim, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.155537

    Article  Google Scholar 

  14. J. Theerthagiri, M. Arun Prasad, S. Jun Lee, K. Karuppasamy, S.R. Arumugam, Y. Yu, M.M. Hanafiah, H. Kim, V. Mittal, M. Yong Choi, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.10.098

    Article  Google Scholar 

  15. W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, Energy Environ. Sci. 8, 1404–1427 (2015). https://doi.org/10.1039/C4EE03869J

    Article  CAS  Google Scholar 

  16. Y. Zhu, X. Liu, S. Jin, H. Chen, W. Lee, M. Liu, Y. Chen, J. Mater. Chem. A. 7(11), 5875–5897 (2019). https://doi.org/10.1039/C8TA12477A

    Article  CAS  Google Scholar 

  17. S.Y. Istomin, E.V. Antipov, E.R. Savinova, Curr. Opin. Electrochem. (2018). https://doi.org/10.1016/j.coelec.2018.09.010

    Article  Google Scholar 

  18. M. Tsai, T. Nguyen, N.G. Akalework, C. Pan, J. Rick, Y. Liao, W. Su, B. Hwang, ACS Catal. (2016). https://doi.org/10.1021/acscatal.6b00600

    Article  Google Scholar 

  19. J. Li, H. Zhou, H. Zhuo, Z. Wei, G. Zhuang, X. Zhong, S. Deng, X. Li, J. Wang, J. Mater. Chem. A. 6, 2264–2272 (2018). https://doi.org/10.1039/c7ta09831f

    Article  CAS  Google Scholar 

  20. J. Yu, T. Huang, Z. Jiang, M. Sun, C. Tang, Molecules (2018). https://doi.org/10.3390/molecules23123227

    Article  Google Scholar 

  21. G. Zhang, H. Luo, H. Li, L. Wang, B. Han, H. Zhang, Y. Li, Z. Chang, Y. Kuang, X. Sun, Nano Energy (2016). https://doi.org/10.1016/j.nanoen.2016.05.029

    Article  Google Scholar 

  22. S. Ding, F. Li, G. Gao, Z. Shen, S. Xin, Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.electacta.2016.12.021

    Article  Google Scholar 

  23. L. Li, Y. Li, Y. Xiao, R. Zeng, X. Tang, W. Yang, J. Huang, K. Yuan, Y. Chen, Chem. Commun. 55, 7538 (2019). https://doi.org/10.1039/c9cc03153

    Article  CAS  Google Scholar 

  24. Y. Su, H. Jiang, Y. Zhu, X. Yang, J. Shen, W. Zou, J. Chen, C. Li, J. Mater. Chem. A 2, 7281 (2014). https://doi.org/10.1039/c4ta00029c

    Article  CAS  Google Scholar 

  25. S. Hu, W. Ni, D. Yang, C. Ma, J. Zhang, J. Duan, Carbon N. Y. 162, 245–255 (2020). https://doi.org/10.1016/j.carbon.2020.02.059

    Article  CAS  Google Scholar 

  26. M. Liu, X. Guo, L. Hu, H. Yuan, G. Wang, B. Dai, L. Zhang, F. Yu, ChemNanoMat (2019). https://doi.org/10.1002/cnma.201800432

    Article  Google Scholar 

  27. G. Lu, H. Zheng, J. Lv, G. Wang, X. Huang, J. Power Sources (2020). https://doi.org/10.1016/j.jpowsour.2020.229091

    Article  Google Scholar 

  28. J. Wang, X. Xiao, Y. Liu, K. Pan, H. Pang, S. Wei, J. Mater. Chem. A. (2019). https://doi.org/10.1039/c9ta04804a

    Article  Google Scholar 

  29. Q. Li, L. Song, Z. Liang, M. Sun, T. Wu, B. Huang, F. Luo, Y. Du, C. Yan, Adv. Energy Sustain. Res. (2021). https://doi.org/10.1002/aesr.202000063

    Article  Google Scholar 

  30. S. Soren, I. Hota, A.K. Debnath, D.K. Aswal, K.S.K. Varadwaj, P. Parhi, Front. Chem. 7, 1–10 (2019). https://doi.org/10.3389/fchem.2019.00403

    Article  CAS  Google Scholar 

  31. L. Pi, R. Jiang, W. Cai, L. Wang, Y. Wang, J. Cai, X. Mao, ACS Appl. Mater. Interfaces 12, 3642–3653 (2020). https://doi.org/10.1021/acsami.9b19614

    Article  CAS  Google Scholar 

  32. K. Liu, X. Huang, H. Wang, F. Li, Y. Tang, J. Li, M. Shao, ACS Appl. Mater. Interfaces 8(50), 34422–34430 (2016). https://doi.org/10.1021/acsami.6b12294

    Article  CAS  Google Scholar 

  33. J. Yang, J. Wang, L. Zhu, W. Zeng, J. Wang, Mater. Lett. 234, 331–334 (2019). https://doi.org/10.1016/j.matlet.2018.09.130

    Article  CAS  Google Scholar 

  34. X. Li, S. You, J. Du, Y. Dai, H. Chen, Z. Cai, J.J. Zou, Mater. Chem. A. 7, 25853–25864 (2019). https://doi.org/10.1039/c9ta08926h

    Article  CAS  Google Scholar 

  35. J. Yang, J. Wang, L. Zhu, Q. Gao, W. Zeng, J. Wang, Y. Li, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.09.111

    Article  Google Scholar 

  36. C. Qiu, S. Wang, R. Gao, J. Qin, W. Li, X. Wang, Z. Zhai, D. Tian, Y. Song, Mater. Today Energy (2020). https://doi.org/10.1016/j.mtener.2020.100557

    Article  Google Scholar 

  37. S. Phokha, S. Pinitsoontorn, P. Chirawatkul, Y. Poo-arporn, S. Maensiri, Nanoscale Res. Lett. (2012). https://doi.org/10.1186/1556-276X-7-425

    Article  Google Scholar 

  38. D. Channei, A. Nakaruk, P. Jannoey, S. Phanichphant, Solid State Sci. 87, 9–14 (2019). https://doi.org/10.1016/j.solidstatesciences.2018.10.016

    Article  CAS  Google Scholar 

  39. S. Lei, K. Tang, Z. Fang, Y. Huang, Nanotechnology 16, 2407–2411 (2005). https://doi.org/10.1088/0957-4484/16/10/069

    Article  CAS  Google Scholar 

  40. M. Sridharan, P. Kamaraj, R. Vennila, Y.S. Huh, M. Arthanareeswari, New J. Chem. (2020). https://doi.org/10.1039/d0nj02234a

    Article  Google Scholar 

  41. B.J. Rani, G.R.S. Ravichandran, V.G. Fuad, A.A. Al, S.R. Yuvakkumar, Appl. Nanosci. (2018). https://doi.org/10.1007/s13204-018-0780-2

    Article  Google Scholar 

  42. J. Yesuraj, E. Elanthamilan, B. Muthuraaman, S.A. Suthanthiraraj, J.P. Merlin, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07539-2

    Article  Google Scholar 

  43. Q. Li, Z. Huang, P. Guan, R. Su, Q. Cao, Y. Chao, W. Shen, J. Guo, H. Xu, R. Che, A.C.S. Appl, Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b03394

    Article  Google Scholar 

  44. D. Duan, C. Hao, L. Wang, W. Shi, H. Wang, G. He, L. Gao, Z. Sun, Nanoscale Res. Lett. (2019). https://doi.org/10.1186/s11671-019-3029-4

    Article  Google Scholar 

  45. G. Gao, W. Dang, H. Wu, G. Zhang, C. Feng, J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-9399-z

    Article  Google Scholar 

  46. K. Polychronopoulou, A.A. Alkhoori, A.M. Efstathiou, M.A. Jaoude, C.M. Damaskinos, M.A. Baker, A. Almutawa, D.H. Anjum, M.A. Vasiliades, A. Belabbes, L.F. Vega, A.F. Zedan, ACS Appl. Mater. Interfaces 13, 22391–22415 (2021). https://doi.org/10.1021/acsami.1c02934

    Article  CAS  Google Scholar 

  47. Z. Chen, C.X. Kronawitter, X. Yang, Y.W. Yeh, N. Yao, B.E. Koel, Phys. Chem. Chem. Phys. (2017). https://doi.org/10.1039/c7cp05248k

    Article  Google Scholar 

  48. A.R. Hwang, J. Park, Y.C. Kang, Bull. Korean Chem. Soc. (2011). https://doi.org/10.5012/bkcs.2011.32.9.3338

    Article  Google Scholar 

  49. S. Tsunekawa, R. Sahara, Y. Kawazoe, A. Kasuya, Mater. Trans. JIM. (2000). https://doi.org/10.2320/matertrans1989.41.1104

    Article  Google Scholar 

  50. K.S. Jeong, J. Song, D. Lim, H. Kim, M.-H. Cho, Appl. Sci. Converg. Technol. (2016). https://doi.org/10.5757/asct.2016.25.1.19

    Article  Google Scholar 

  51. J.Y. Jung, S.S. Yi, D.H. Hwang, C.S. Son, Structure (2021). https://doi.org/10.3390/ma14133717

    Article  Google Scholar 

  52. J. Deng, Y. Zhou, S. Li, L. Xiong, J. Wang, S. Yuan, Y. Chen, J. Ind. Eng. Chem. (2018). https://doi.org/10.1016/j.jiec.2018.03.018

    Article  Google Scholar 

  53. N. Bhuvanendran, S. Ravichandran, S. Kandasamy, H. Su, Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-01902-8

    Article  Google Scholar 

  54. N. Bhuvanendran, S. Ravichandran, K. Peng, Q. Xu, L. Khotseng, H. Su, Appl. Surf. Sci. 565, 150511 (2021). https://doi.org/10.1016/j.apsusc.2021.150511

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Scheme for Promotion of Academic and Research Collaboration (SPARC) of the Ministry of Human Resource Development (MHRD), Government of India, SPARC Grant No. SPARC/2018-2019/P1122/SL and Department of Science and Technology-DST/TMD/MES/2k17/27 India and support from SRM Institute of Science and Technology, Kattankulathur in carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Maiyalagan.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 194 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridharan, M., Maiyalagan, T. Synergistically enhanced electrocatalytic activity of cerium oxide/manganese tungstate composite for oxygen reduction reaction. J Mater Sci: Mater Electron 33, 9538–9548 (2022). https://doi.org/10.1007/s10854-021-07505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07505-x

Navigation