Skip to main content
Log in

In situ one-step synthesis of CuInS2 thin films with different morphologies and their optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CuInS2 (CIS) thin films with petal-like nanostructures were synthesized in situ on copper substrates through a facile, one-step solvothermal method using InCl3 and thioacetamide ethylene glycol solution. In order to reveal the growth mechanism of CIS petal-like nanostructures, we synthesized CIS thin films with different morphologies at various reaction times. CIS thin films had a petal-like nanostructure. The petal possesses the preferentially exposed (222) facet, which becomes bigger and thicker as the increase of the reaction time. CIS petal-like nanostructures exhibited excellent light absorption properties. The average light absorption value of CIS synthesized at a reaction time of 4 h reached to 96.5%, and the minimum light absorption value even reached to 92% for that synthesized at a reaction time of 10 h. The CIS petal-like nanostructures synthesized at a reaction time of 4 h exhibit a band gap of 1.58 eV, which is much larger than that of the corresponding bulk material (1.04 eV). Furthermore, the band gap of CIS petal-like nanostructure decreases with increasing reaction time due to the increased “petal” thickness. All these results showed that the light absorption properties and band gap of CIS petal-like nanostructures can be adjusted by controlling the reaction time, which also indicated the application advantages of CIS petal-like nanostructures in photovoltaic and photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Y. Kwon, J. Seo, Y. Kang, D. Kim, J. Kim, Opt. Express 26, A30–A38 (2018)

    Article  CAS  Google Scholar 

  2. A.H. Hu, J. Zhou, P.J. Zhong, X.Y. Qin, M.F. Zhang, Y.X. Jiang, X.Z. Wu, D.R. Yang, Sol. Energy 214, 319–325 (2021)

    Article  CAS  Google Scholar 

  3. Y. Cao, W.W. Li, Z. Liu, Z.Q. Zhao, Z.Y. Xiao, W. Zi, N.A. Cheng, CrystEngComm. (2021). https://doi.org/10.1039/D0CE01566K

  4. M. Li, R.J. Zhao, Y.J. Su, Z. Yang, Y.F. Zhang, Nanoscale. 8, 8559-8567 (2016)

  5. L.Q. Li, W.X. Zhang, P. Li, Cryst. Res. Technol. 1–5, 1900178 (2020)

  6. L.Q. Li, M. Li, P. Li, Mater. Charact. 172, 110900 (2021)

    Article  CAS  Google Scholar 

  7. R. Inguanta, P. Livreri, S. Piazza, C. Sunseri, Solid-State Lett 13, k22–k25 (2010)

    Article  CAS  Google Scholar 

  8. J.S. Luo, L. Steier, M.K. Son, M. Schreier, M.T. Mayer, M. Grätzel, Nano Lett. 16, 1848–1857 (2016)

    Article  CAS  Google Scholar 

  9. F. Fu, G. Cha, N. Denisov, Y.Y. Chen, Y. Zhang, P. Schmuki, CrystEngComm. 7, 2792–2796 (2020)

    CAS  Google Scholar 

  10. Y. Yang, M.R. Hoffmann, Environ. Sci. Technol. 50, 11888–11894 (2016)

    Article  CAS  Google Scholar 

  11. Y. Lei, H.M. Jia, Z. Zheng, Y.H. Gao, X.W. Chen, H.W. Hou, CrystEngComm. 13, 6212–6217 (2011)

    Article  CAS  Google Scholar 

  12. J. Li, H.X. Zhao, X.H. Chen, H.M. Jia, Z. Zheng, Mater. Res. Bull. 48, 2940–2943 (2013)

    Article  CAS  Google Scholar 

  13. S.C. Li, K. Yu, Y. Wang, Z.L. Zhang, C.Q. Song, H.H. Yin, Q. Ren, Z.Q. Zhu, CrystEngComm. 15, 1753–1761 (2013)

    Article  CAS  Google Scholar 

  14. P.T. Sheng, W.L. Li, X. Tong, X. Wang, Q.Y. Cai, J. Mater. Chem. A. 2, 18974–18987 (2014)

    Article  CAS  Google Scholar 

  15. M. Moriya, T. Minegishi, H. Kumagai, M. Katayama, J. Kubota, K. Domen, J. Am. Chem. Soc. 135, 3733–3735 (2013)

    Article  CAS  Google Scholar 

  16. Y. Choi, M. Beak, K. Yong, Nanoscale. 6, 8914–8918 (2014)

    Article  CAS  Google Scholar 

  17. H. Kaga, Y. Tsutsui, A. Nagane, A. Iwase, A. Kudo, J. Mater. Chem. A. 3, 21815–21823 (2015)

    Article  CAS  Google Scholar 

  18. T.J. Jacobsson, C.P. Björkman, M. Edoff, T. Edvinsson, Int. J. Hydrogen Energy 38, 15027–15035 (2013)

    Article  CAS  Google Scholar 

  19. J.J. Ning, Z.H. Duan, S.V. Kershaw, A.L. Rogach, ACS Nano 14, 11799–11808 (2020)

    Article  CAS  Google Scholar 

  20. P. Dube, A.O. Juma, C.M. Muiva, Ceram. Int. 46, 7396–7402 (2020)

    Article  CAS  Google Scholar 

  21. M. Dehghani, E. Parvazian, N.A. Tehrani, N. Taghavinia, M. Samadpour, Mater. Today. 26, 102050 (2021)

    CAS  Google Scholar 

  22. S.O.M. Hinterding, M.J.J. Mangnus, P.T. Prins, H.J. Jöbsis, S. Busatto, D. Vanmaekelbergh, C.M. Donega, F.T. Rabouw, Nano Lett. 21, 658–665 (2021)

    Article  CAS  Google Scholar 

  23. M. Li, R.J. Zhao, Y.J. Su, J. Hu, Z. Yang, Y.F. Zhang, Adv. Mater. Interfaces. 3, 1600410–1600494 (2016)

    Google Scholar 

  24. X.L. Tu, M. Li, Y.J. Su, G.L. Yin, J. Lu, D.N. He, J. Alloy. Compd. 809, 151794 (2019)

    Article  CAS  Google Scholar 

  25. M.B. Rabeh, M. Kanzari, B. Rezig, J. Optoelectron. Adv. M. 1, 70–78 (2009)

    Google Scholar 

  26. D.Y. Lee, J.H. Kim, Thin Solid Films 518, 6537–6541 (2010)

    Article  CAS  Google Scholar 

  27. T. Gotoh, J. Appl. Phys. 89, 20301 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11704237, 11875183, 61804156, U1404115 and 11647019), Key teacher program of Henan Province (Grant No. 2018GGJS135), Henan Provincial Natural Science Foundation of China (Grant No. 212102210221), Program for Innovative Research Team (in Science and Technology) in University of Henan Province (Grant No. 16IRTSTHN028), and Shanghai Sailing Program (Grant No. 18YF1427800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Chen, Y., Lv, Z. et al. In situ one-step synthesis of CuInS2 thin films with different morphologies and their optical properties. J Mater Sci: Mater Electron 33, 2995–3001 (2022). https://doi.org/10.1007/s10854-021-07499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07499-6

Navigation