Skip to main content
Log in

Controlled Synthesis of Nanostructured CuInS2: Study of Mechanism and Its Application in Low-Cost Solar Cells

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Various morphologies of CuInS2 (CIS) nanostructures were successfully synthesized by an oxalic acid (OA), H2C2O4, assisted solvothermal treatment. FT-IR, XRD, scanning electron microscopy, gas-sorption measurements and diffuse transmittance spectroscopy were used to characterization of CIS nanostructures. The impact of thiourea and OA concentrations, reaction temperature and reaction time on the phase structure, morphology and optical properties are investigated. The formation process is discussed and a possible growth model is proposed. OA is found to play key role during the formation process of the CIS nanostructure. Dispersion of the final nanostructures in dimethylformamide solvent forms a viscous and stable ink which can be easily deposited onto substrates. CIS nanostructures inks were applied in a cadmium-free all solution-based CuInS2 superstrate-type solar cell devices with Glass/FTO/TiO2/In2S3/CIS/Carbon structure. All processes were vacuum- and selenization-free and were done under atmospheric condition. The optimum cell shows the short-circuit current density of 13.8 mA/cm2 and the power conversion efficiency of 2.07 %, respectively. Our study outlines a general strategy for using CuInS2 nanostructures for photovoltaic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Ben Rabeh, N. Khedmi, M.A. Fodha, M. Kanzari, Energy Procedia 44, 52 (2014)

    Article  CAS  Google Scholar 

  2. J. Klaer, J. Bruns, R. Henninger, K. Siemer, R. Klenk, K. Ellmer, D. Bräunig, Semicond. Sci. Technol. 13, 1456 (1998)

    Article  CAS  Google Scholar 

  3. H.J. Lewerenz, Sol. Energy Mater. Sol. Cells 83, 395 (2004)

    Article  CAS  Google Scholar 

  4. A. Tadjarodi, A. Cheshmekhavar, M. Imani, Appl. Surf. Sci. 263, 449 (2012)

    Article  CAS  Google Scholar 

  5. K.J. Plucinski, A.M. El-Naggar, N.S. AlZayed, A.A. Albassam, A.O. Fedorchu, D. Kulwas, I.V. Kityk, Mater. Sci. Semicond. 38, 184 (2015)

    Article  CAS  Google Scholar 

  6. Y. Al-Douri, H. Khachai, R. Khenata, Mater. Sci. Semicond. Proc. 39, 276 (2015)

    Article  CAS  Google Scholar 

  7. H. Fakhri, A. Mahjoub, A. Cheshmekhavar, Appl. Surf. Sci. 318, 65 (2014)

    Article  CAS  Google Scholar 

  8. S. Tomić, L. Bernasconi, B.G. Searle, N.M. Harrison, J. Phys. Chem. C 118, 14478 (2014)

    Article  Google Scholar 

  9. H. Azimi, Y. Hou, C. Brabec, Energy Environ. Sci. 7, 1829 (2014)

    Article  CAS  Google Scholar 

  10. D. Lee, K. Yong, J. Phys. Chem. C 118, 7788 (2014)

    Article  CAS  Google Scholar 

  11. L. Li, N. Coates, D. Moses, J. Am. Chem. Soc. 132, 22 (2010)

    Article  CAS  Google Scholar 

  12. H. Azimi, T. Heumuller, A. Gerl, G. Matt, P. Kubis, M. Distaso, R. Ahmad, T. Akdas, M. Richter, W. Peukert, C.J. Brabec, Adv. Eng. Mater. 3, 1589 (2013)

    Article  CAS  Google Scholar 

  13. W. Wang, Y. Su, C. Chang, Sol. Energy Mater. Sol. Cells 95, 2616 (2011)

    Article  CAS  Google Scholar 

  14. A. Cho, S. Ahn, J. Yun, J. Gwak, S.K. Ahn, K. Shin, H. Song, K.H. Yoon, Sol. Energy Mater. Sol. Cells 109, 17 (2013)

    Article  CAS  Google Scholar 

  15. S. Ahn, K. Kim, A. Cho, J. Gwak, J.H. Yun, K. Shin, S.K. Ahn, K. Yoon, ChemSusChem 5, 1773 (2012)

    Article  CAS  Google Scholar 

  16. Q. Guo, G.M. Ford, R. Agrawal, H.W. Hillhouse, Prog. Photovolt. Res. Appl. 21, 64 (2013)

    Article  CAS  Google Scholar 

  17. H.T. Tung, I.G. Chen, J.M. Song, M.G. Tsai, I.M. Kempson, G. Margaritondo, Y. Hwu, Nanoscale 5, 4706 (2013)

    Article  CAS  Google Scholar 

  18. A.H. Cheshme Khavar, A. Mahjoub, F. Tajabadi, M. Dehghani, N. Taghavinia, Eur. J. Inorg. Chem. 35, 5793 (2015)

    Article  Google Scholar 

  19. J. Li, M. Bloemen, J. Parisi, J. Kolny-Olesiak, A.C.S. Appl, Mater. Interfaces 6, 20535 (2014)

    Article  CAS  Google Scholar 

  20. H. Fakhri, A.R. Mahjoub, A.H. CheshmeKhavar, Mater. Sci. Semicond. Proc. 41, 38 (2016)

    Article  CAS  Google Scholar 

  21. Q. Li, C. Zou, L. Zhai, L. Zhang, Y. Yang, X. Chen, S. Huang, Cryst. Eng. Commun. 15, 1806 (2013)

    Article  CAS  Google Scholar 

  22. Y.S. Lim, J. Jeong, J.Y. Kim, M.J. Ko, H. Kim, B. Kim, U. Jeong, D.-K. Lee, J. Phys. Chem. C 117, 11930 (2013)

    Article  CAS  Google Scholar 

  23. S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, J. Ind. Eng. Chem. 20, 3335 (2014)

    Article  CAS  Google Scholar 

  24. S.H. Chang, M.Y. Chiang, C.C. Chiang, F.W. Yuan, C.Y. Chen, B.C. Chiu, T.L. Kao, C.H. Lai, H.Y. Tuan, Energy Environ. Sci. 4, 4929 (2011)

    Article  CAS  Google Scholar 

  25. J. Xia, Y. Liu, X. Qiu, Y. Mao, J. He, L. Chen, Mater. Chem. Phys. 136, 823 (2012)

    Article  CAS  Google Scholar 

  26. H. Cao, Y. Zhu, X. Yang, C. Li, RSC Adv. 2, 4055 (2012)

    Article  CAS  Google Scholar 

  27. M. Nanu, J. Schoonman, A. Goossens, Nano Lett. 5, 1716 (2005)

    Article  CAS  Google Scholar 

  28. J. He, W. Zhou, S. Wu, Cryst. Eng. Commun. 14, 3638 (2012)

    Article  CAS  Google Scholar 

  29. S. Krzewska, H. Podsiadły, L. Pajdowski, J. Inorg. Nucl. Chem. 42, 89 (1980)

    Article  CAS  Google Scholar 

  30. H.Z. Zhong, Y. Zhou, M.F. Ye, Y.J. He, J.P. Ye, C. He, C.H. Yang, Y.F. Li, Chem. Mater. 20, 6434 (2008)

    Article  CAS  Google Scholar 

  31. R.L. Penn, J. Phys. Chem. B 108, 12707 (2004)

    Article  CAS  Google Scholar 

  32. Z.Y. Tang, N.A. Kotov, M. Giersig, Science 297, 237 (2002)

    Article  CAS  Google Scholar 

  33. A. Narayanaswamy, H.F. Xu, N. Pradhan, M. Kim, X.G. Peng, J. Am. Chem. Soc. 128, 10310 (2006)

    Article  CAS  Google Scholar 

  34. K.W. Cheng, Y.C. Wu, Y.T. Hu, Mater. Res. Bull. 48, 2457 (2013)

    Article  CAS  Google Scholar 

  35. A. Goossens, J. Hofhuis, Nanotechnology 19, 424018 (2008)

    Article  Google Scholar 

  36. J.W. Cho, S.J. Park, W. Kim, B.K. Min, Nanotechnology 2, 265401 (2012)

    Article  Google Scholar 

  37. T. Ryo, D.C. Nguyen, M. Nakagiri, N. Toyoda, H. Matsuyoshi, S. Ito, Thin Solid Films 516, 7184 (2011)

    Article  Google Scholar 

  38. M.R. Balboul, A. Jasenek, O. Chernykh, U. Rau, H.W. Schock, Thin Solid Films 387, 74 (2001)

    Article  CAS  Google Scholar 

  39. A. Cheshmekhavar, A. Mahjoub, H. Fakhri, M. Dehghani, RSC Adv. 15, 9738 (2015)

    Google Scholar 

  40. E. Yablonovitch, G.D. Cody, Electron. Dev. 29, 300 (1982)

    Article  Google Scholar 

  41. S. Dadgostar, F. Tajabadi, N. Taghavinia, ACS Appl. Mater. Interfaces 4, 2964 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of this study, by Tarbiat modares university and Iranian Nanotechnology Initiative, is gratefully acknowledged. The authors gratefully acknowledge the contribution of Dr. Nima Taghavinia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Mahjoub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheshme Khavar, A.H., Mahjoub, A.R. & Fakhri, H. Controlled Synthesis of Nanostructured CuInS2: Study of Mechanism and Its Application in Low-Cost Solar Cells. J Inorg Organomet Polym 26, 1075–1086 (2016). https://doi.org/10.1007/s10904-016-0417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-016-0417-4

Keywords

Navigation