Skip to main content
Log in

Influence of zirconium ions on the key characteristics of V2O5 nanorods and current–voltage features of the n-ZrxV2O5/p-Si photodetector

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This article reports microstructural, morphological, optical, and photoresponse characteristics of pure and zirconium-doped V2O5 nanorods (Zr:V2O5; Zr at. 1, 3, 5, and 7 wt%) that were synthesized via the wet precipitation method. Undoubtedly, under experimental conditions, a growth mechanism has been proposed which explains morphological evolution. The microstructural analysis confirmed that the prepared samples showed a broad peak consistent with the V2O5 orthorhombic structure, and the absences of other reflections in this pattern ensure the phase purity. The optimized average crystallite size is determined by using Scherrer’s equation from the most influential (002) peak of diffraction, which has coincided with those calculated by the TEM micrograph. SEM images showed agglomerated particles on the surfaces owing to an increase in the Zr-doping levels. The outcomes of Raman and XPS indicate that Zr doping can facilitate the generation of V5+ and oxygen vacancy. The recorded UV-DRS spectra reveal the redshifts, and the estimated optical bandgap (Eg) was decreasing with increasing Zr amount, which is further confirmed by PL studies. We used the nebulizer spray technique, a cost-effective, sophisticated, and effective way to formulate an n-ZrxV2O5/p-Si photodetector. The formulated n-ZrxV2O5/p-Si photodetector has good photoconducting behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. R. Schlesser, R. Dalmau, D. Zhuang, R. Collazo, Z. Sitar, J. Cryst. Growth 281, 75–80 (2005)

    Article  CAS  Google Scholar 

  2. L. Brewer, B.B. Ebbinghaus, Thermochim. Acta 129, 49–55 (1988)

    Article  CAS  Google Scholar 

  3. Z. Guo, B. Liu, Q. Zhang, W. Deng, Y. Wang, Y. Yang, Chem. Soc. Rev. 43, 3480–3524 (2014)

    Article  CAS  Google Scholar 

  4. Q. Song, H. Pang, W. Gong, G. Ning, S. Gao, X. Dong, C. Liu, J. Tian, Y. Lin, RSC Adv. 5, 4256–4260 (2015)

    Article  CAS  Google Scholar 

  5. A. Cannavale, P. Cossari, G.E. Eperon, S. Colella, F. Fiorito, G. Gigli, H.J. Snaith, A. Listorti, Energy Environ. Sci. 9, 2682–2719 (2016)

    Article  Google Scholar 

  6. S. Rafique, S.M. Abdullah, W.E. Mahmoud, A.A. Al-Ghamdi, K. Sulaiman, RSC Adv. 6, 50043–50052 (2016)

    Article  CAS  Google Scholar 

  7. L. Minsu, S. Bin, Y. Tang, J. Xuchan, Y. Aibing, Adv. Energy Mater. 7, 1700885 (2017)

    Article  Google Scholar 

  8. C. Julien, E. Haro-Poniatowski, M.A. Camacho-López, L. Escobar-Alarcón, J. Jienez-Jarquin, Mater. Sci. Eng. B 65, 170–176 (1999)

    Article  Google Scholar 

  9. M. Giorgetti, M. Berrettoni, W.H. Smyrl, Chem. Mater. 19, 5991–6000 (2007)

    Article  CAS  Google Scholar 

  10. Y. Ji, D. Fang, C. Wang, Z. Zhou, Z. Luo, J. Huang, J. Yi, J. Alloy. Compd. 742, 567–576 (2018)

    Article  CAS  Google Scholar 

  11. N. Singh, A. Umar, N. Singh, H. Fouad, O.Y. Alothman, F.Z. Haque, Mater. Res. Bull. 108, 266–274 (2018)

    Article  CAS  Google Scholar 

  12. H. Song, C. Liu, C. Zhang, G. Cao, Nano Energy 22, 1–10 (2016)

    Article  Google Scholar 

  13. A. Venkatesan, N.R. Krishna Chandar, A. Kandasamy, M. Karl Chinnu, K.N. Marimuthu, R. Mohan Kumar, R. Jayavel, RSC Adv. 5, 21778–21785 (2015)

    Article  CAS  Google Scholar 

  14. I. Pradeep, E. Ranjith Kumar, N. Suriyanarayanan, K. Mohanraj, C. Srinivas, M.V.K. Mehar, New J. Chem. 42, 4278–4288 (2018)

    Article  CAS  Google Scholar 

  15. V. Petkov, P.N. Trikalitis, E.S. Bozin, S.J.L. Billinge, T. Vogt, M.G. Kanatzidis, J. Am. Chem. Soc. 124, 10157–10162 (2002)

    Article  CAS  Google Scholar 

  16. W. Yu, J. Wang, Z. Gou, W. Zeng, W. Guo, L. Lin, Ceram. Int. 39, 2639–2643 (2013)

    Article  CAS  Google Scholar 

  17. B. Alonso, J. Livage, J. Solid State Chem. 148, 16–19 (1999)

    Article  CAS  Google Scholar 

  18. C.J. Fontenot, J.W. Wiench, M. Pruski, G.L. Schrader, J. Phys. Chem. B 104, 11622–11631 (2000)

    Article  CAS  Google Scholar 

  19. G.T. Chandrappa, P. Chithaiah, S. Ashoka, J. Livage, Inorg. Chem. 50, 7421–7428 (2011)

    Article  CAS  Google Scholar 

  20. Y. Zhang, J. Zheng, Y. Zhao, T. Hu, Z. Gao, C. Meng, Appl. Surf. Sci. 377, 385–393 (2016)

    Article  CAS  Google Scholar 

  21. M. Epifani, R. Díaz, C. Force, E. Comini, T. Andreu, R.R. Zamani, J. Arbiol, P. Siciliano, G. Faglia, J.R. Morante, J. Phys. Chem. C 117, 20697–20705 (2013)

    Article  CAS  Google Scholar 

  22. X. Ren, Y. Jiang, P. Zhang, J. Liu, Q. Zhang, J. Sol-Gel Sci. Technol. 51, 133–138 (2009)

    Article  CAS  Google Scholar 

  23. R. Baddour-Hadjean, M.B. Smirnov, K.S. Smirnov, V.Y. Kazimirov, J.M. Gallardo-Amores, U. Amador, M.E. Arroyo-de Dompablo, J.P. Pereira-Ramos, Inorg. Chem. 51, 3194–3201 (2012)

    Article  CAS  Google Scholar 

  24. P. Clauws, J. Broeckx, J. Vennik, Phys. status solidi 131, 459–473 (1985)

    Article  CAS  Google Scholar 

  25. S.-H. Lee, H.M. Cheong, M.J. Seong, P. Liu, C.E. Tracy, A. Mascarenhas, J.R. Pitts, S.K. Deb, Solid State Ion. 165, 111–116 (2003)

    Article  CAS  Google Scholar 

  26. C.W. Zou, Y.F. Rao, A. Alyamani, W. Chu, M.J. Chen, D.A. Patterson, E.A.C. Emanuelsson, W. Gao, Langmuir 26, 11615–11620 (2010)

    Article  CAS  Google Scholar 

  27. B.M. Reddy, B. Chowdhury, E.P. Reddy, A. Fernández, J. Mol. Catal. A: Chem. 162, 431–441 (2000)

    Article  Google Scholar 

  28. S. Zhao, P. Li, Y. Wei, Powder Technol. 224, 390–394 (2012)

    Article  CAS  Google Scholar 

  29. K. Karthika, K. Ravichandran, J. Mater. Sci. Technol. 31, 1111–1117 (2015)

    Article  CAS  Google Scholar 

  30. L. Bixia, F. Zhuxi, J. Yunbo, Appl. Phys. Lett. 79, 943–945 (2001)

    Article  Google Scholar 

  31. N.K. Dutta, R.J. Nelson, J. Appl. Phys. 53, 74–92 (1998)

    Article  Google Scholar 

  32. P. Klason, M.M. Rahman, Q.-H. Hu, O. Nur, R. Turan, M. Willander, Microelectron. J. 40, 706–710 (2009)

    Article  CAS  Google Scholar 

  33. A. Bengi, S. Altındal, S. Özçelik, S.T. Agaliyeva, T.S. Mammadov, Vacuum 83, 276–281 (2009)

    Article  Google Scholar 

  34. O. Pakma, N. Serin, T. Serin, S. Altındal, J. Sol-Gel Sci. Technol. 50, 28–34 (2009)

    Article  CAS  Google Scholar 

  35. A. Tataroglu, S. Altındal, J. Alloy. Compd. 479, 893–897 (2009)

    Article  CAS  Google Scholar 

  36. O. Pakma, N. Serin, T. Serin, Ş Altındal, J. Appl. Phys. 104, 014501 (2008)

    Article  Google Scholar 

  37. M. Ozer, D.E. Yıldız, S. Altındal, M.M. Bulbu, Solid-State Electron. 51, 941–949 (2007)

    Article  Google Scholar 

  38. S. Altındal, H. Kanbur, D.E. Yıldız, M. Parlak, Appl. Surf. Sci. 253, 5056–5061 (2007)

    Article  Google Scholar 

  39. K. Mohanraj, D. Balasubramanian, J. Chandrasekaran, A. Chandra Bose, Mater. Sci. Semicond. Process. 79, 74–91 (2018)

    Article  CAS  Google Scholar 

  40. H.M. Zhang, W.C.H. Choy, IEEE Trans. Electron Devices 55, 2517–2520 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to express their sincere thanks to the UGC-Rajiv Gandhi National Fellowship (F1-17.1/ 2016-17/RGNF-2015-17-SC-TAM-8030) at New Delhi. Also, The authors express their gratitude to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant number R.G.P. 2/137/42.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Thangarasu or Mohd. Shkir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thangarasu, R., Kulathuraan, K., Chang, J.H. et al. Influence of zirconium ions on the key characteristics of V2O5 nanorods and current–voltage features of the n-ZrxV2O5/p-Si photodetector. J Mater Sci: Mater Electron 33, 2932–2948 (2022). https://doi.org/10.1007/s10854-021-07492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07492-z

Navigation