Skip to main content
Log in

The effect of the annealing temperature on the structure and electrical properties of Li/Ta-modified (K0.5Na0.5)NbO3-based piezoelectric crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As we all known that the piezoelectric single crystals exhibit unique and outstanding performance and therefore have been used widely in many electronic devices, including sensors, actuators, and transducers. Recently, large lead-free K0.5Na0.5NbO3(KNN)-based piezoelectric single crystals were prepared using a seed-free solid-state crystal growth (SFSSCG) method. However, there are some defects in the crystals prepared by this method. The defects would inhibit the domain-wall movement and increase the leakage currents in the crystals and then prevent the improvement of performance of the crystals. Here, an approach to considerably enhance the piezoelectric properties of the KNN-based crystals by annealing treatment is reported. The effect of the annealing temperature on the structure and electrical properties of the crystals was studied. The results show that the annealing temperature has a little effect on the crystalline structure but great effect on the natural surface morphology, domain structure, and electrical properties of the single crystals. When the annealing temperature is in the range of 550 ~ 800 °C, it can enhance significantly the piezoelectric, ferroelectric, and dielectric properties of the crystals and decrease their dielectric loss. The crystal annealed at 700 °C shows excellent properties: d33 = 591pC/N, εr = 580, tanδ = 0.01, kt = 0.715, and Tc = 417 °C. The effects of the annealing treatment on the leakage current density and conduction mechanism in the crystals were also studied. The results indicate that the annealing treatment enables the crystals to far outperform the unannealed crystals and comparable to the lead-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Abraham, Am Ceram Bull. 79, 45 (2000)

    CAS  Google Scholar 

  2. T. Tani, T. Kimury, Adv Appl Ceram. 105, 55 (2006)

    Article  CAS  Google Scholar 

  3. W. Yao, J. Zhang, X. Wang, C. Zhou, X. Sun, J. Zhan, J. Eur. Ceram. Soc. 39, 287 (2019)

    Article  CAS  Google Scholar 

  4. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, M. Nakamura, Nature 432, 84 (2004)

    Article  CAS  Google Scholar 

  5. J. Hao, W. Li, J. Zhai, H. Chen, Mater. Sci. Eng. R. 135, 1 (2019)

    Article  Google Scholar 

  6. M. Jiang, X. Liu, G. Chen, J. Cheng, J. Mater. Sci. Mater. EL. 22, 876 (2011)

    Article  CAS  Google Scholar 

  7. M. Jiang, C.A. Randall, H. Guo, G. Rao, T. Rong, Z.F. Gu, G. Cheng, X. Liu, J. Zhang, Y. Li, J. Am. Ceram. Soc. 98, 2988 (2015)

    Article  CAS  Google Scholar 

  8. M. Jiang, J. Zhang, G. Rao, D. Li, C.A. Randall, T. Li, B. Peng, L. Li, Z. Gu, X. Liu, H. Huang, J. Mater Chem C. 7, 14845 (2019)

    Article  CAS  Google Scholar 

  9. M. Jiang, G. Zhao, Z. Gu, G. Cheng, X. Liu, L. Li, Y. Du, J. Mater. Sci. Mater. EL. 26, 9366 (2015)

    Article  CAS  Google Scholar 

  10. Z. Shen, Y. Zhen, K. Wang, J. Li, J. Am. Ceram. Soc. 92, 1748 (2010)

    Article  Google Scholar 

  11. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, J. Am. Ceram Soc. 136, 2905 (2014)

    CAS  Google Scholar 

  12. J. Li, K. Wang, F. Zhu, L. Cheng, F. Yao, J. Am. Ceram. Soc. 96, 3677 (2013)

    Article  CAS  Google Scholar 

  13. B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, J. Zhu, X. Wang, X. Lou, A.C.S. Appl, Mater. Interfaces. 5, 7718 (2013)

    Article  CAS  Google Scholar 

  14. J. Wu, D. Xiao, J. Zhu. Chem. Rev. 115, 2559 (2015)

    Article  CAS  Google Scholar 

  15. N. Klein, E. Hollenstein, D. Damjanovic, H.J. Trodahl, N. Setter, M. KuballKlein, J. Appl. Phys. 102, 014112 (2007)

    Article  Google Scholar 

  16. J. Hao, B. Shen, J. Zhai, C. Liu, X. Li, X. Gao, J. Appl. Phys. 113, 114106 (2013)

    Article  Google Scholar 

  17. R. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh, Phys. Status Solidi RRL 3, 142 (2009)

    Article  CAS  Google Scholar 

  18. X. Cheng, Q. Gou, J. Wu, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, X. Cheng, Ceram. Int. 40, 5771 (2014)

    Article  CAS  Google Scholar 

  19. S. Sturm, A. Bencan, M.A. Gulgun, B. Malic, M. Kosec, J. Am. Ceram. Soc. 94, 2633 (2011)

    Article  CAS  Google Scholar 

  20. J. Song, C. Hao, Y. Yan, J. Zhang, L. Li, M. Jiang, Mater. Lett. 204, 19 (2017)

    Article  CAS  Google Scholar 

  21. X. Yao, M. Jiang, S. Han, D. Li, Y. Xu, L. Li, G. Rao, J. Mater. Res. 4, 1 (2021)

    Google Scholar 

  22. Y. Zhen, J. Li, J. Am. Ceram. Soc. 89, 3669 (2006)

    Article  CAS  Google Scholar 

  23. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Adv. Mater. 28, 8519 (2016)

    Article  CAS  Google Scholar 

  24. E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, J. Appl. Phys. 87, 182905 (2005)

    Google Scholar 

  25. D. Li, M. Jiang, S. Han, Q. Jin, Y. Xu, X. Yao, K. Zhang, L. Li, L. Miao, C. Zhou, G. Rao, J. Mater. Sci. Mater. EL. 31, 4857 (2020)

    Article  CAS  Google Scholar 

  26. D. Lin, K.W. Kwok, H.L.W. Chan, Appl. Phys. A. 91, 167 (2008)

    Article  CAS  Google Scholar 

  27. J. Du, F. An, Z. Xu, R. Cheng, R. Chu, X. Yi, J. Hao, W. Li, Ceram. Int. 42, 1943 (2016)

    Article  CAS  Google Scholar 

  28. S. Zhang, F. Li, J. Appl. Phys. 111, 2 (2012)

    Google Scholar 

  29. S.-E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804 (1997)

    Article  CAS  Google Scholar 

  30. Y. Wang, C. Luo, S. Wang, C. Chen, G. Yuan, H. Luo, D. Viehland 6, 1900949 (2020)

    CAS  Google Scholar 

  31. H. Tian, X. Meng, C. Hu, P. Tan, X. Cao, G. Shi, Z. Zhou, R. Zhang, Sci. Rep. 6, 25637 (2016)

    Article  CAS  Google Scholar 

  32. J. Zhang, M. Jiang, G. Cheng, Z. Gu, X. Liu, J. Song, L. Li, Y. Du, Ferroelectrics 502, 210 (2016)

    Article  CAS  Google Scholar 

  33. C.Y. Hao, Z.F. Gu, G. Cheng, L. Li, J.W. Zhang, J.G. Song, Y.F. Yan, M. Jiang, J. Mater. Sci. Mater. EL. 28, 18357 (2017)

    Article  CAS  Google Scholar 

  34. X. Yao, M. Jiang, W. Li, H. Lu, L. Lin, G. Rao, J. Mater. Sci. Mater. EL. 31, 21971 (2020)

    Article  CAS  Google Scholar 

  35. M. Jiang, S. Han, J. Zhang, J. Song, C. Hao, M. Deng, L. Ge, Z. Gu, X. Liu, J. Cryst. Growth. 483, 258 (2018)

    Article  CAS  Google Scholar 

  36. K. Chen, G.S. Xu, D.F. Yang, X.F. Wang, J.B. Li, J. Appl. Phys. 101, 044103 (2007)

    Article  Google Scholar 

  37. J.J. Wang, L.M. Zheng, B. Yang, R. Wang, X.Q. Huo, S.J. Sang, J. Wu, Y.F. Chang, H.P. Ning, T.Q. Lv, J. Cryst. Growth. 409, 39 (2015)

    Article  CAS  Google Scholar 

  38. M. Bah, F. Giovannelli, R. Retoux, J. Bustillo, E. Le Clezio, I. Monot-Laffez, Cryst. Growth Des. 16, 315 (2016)

    Article  CAS  Google Scholar 

  39. X.Q. Huo, L.M. Zheng, S.J. Zhang, R. Zhang, G. Liu, R. Wang, B. Yang, W.W. Cao, T.R. Shrout, Phys. Status Solidi RRL 8, 86 (2014)

    Article  CAS  Google Scholar 

  40. Y. Kizaki, Y. Noguchi, M. Miyayama, Appl. Phys. Lett. 89, 142910 (2006)

    Article  Google Scholar 

  41. E. Ruff, S. Krohns, M. Lilienblum, D. Meier, M. Fiebig, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 118, 036803 (2017)

    Article  CAS  Google Scholar 

  42. H. Liu, P. Veber, J. Rödela, D. Rytz, P.B. Fabritchnyi, M.I. Afanasov, E.A. Patterson, T. Frömling, M. Maglione, J. Koruza, Acta Mater. 148, 499 (2018)

    Article  CAS  Google Scholar 

  43. Y. Kizaki, Y. Noguchi, M. Miyayama, Appl. Phys. Lett 89, 142910 (2006)

    Article  Google Scholar 

  44. R.-M. Fernando, P. Marchet, J.J. Romero, F.J. Fernandez, Ultrason. Ferroelect. Freq. Contr. IEEE Trans. 58, 1826 (2011)

    Article  Google Scholar 

  45. Y. Guo, K.I. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004)

    Article  CAS  Google Scholar 

  46. J. Zhang, Y. Qin, G. Yong, W. Yao, M. Zhao, J. Am. Ceram. Soc. 97, 759 (2014)

    Article  CAS  Google Scholar 

  47. C. Zhou, J. Zhang, W. Yao, X. Wang, D. Liu, X. Sun, J. Appl. Phys. 124, 164101 (2018)

    Article  Google Scholar 

  48. Y. Qin, J. Zhang, Y. Gao, Y. Tan, C. Wang, J. Appl. Phys. 113, 204107 (2013)

    Article  Google Scholar 

  49. Q. Liu, Y. Zhang, L. Zhao, J. Gao, Z. Zhou, K. Wang, X. Zhang, L. Li, J.-F. Li, J. Mater. Chem. C. 6, 10618 (2018)

    Article  CAS  Google Scholar 

  50. Q. Liu, J.-F. Li, L. Zhao, Y. Zhang, J. Gao, W. Sun, K. Wang, L. Li, J. Mater. Chem. C. 6, 1116 (2018)

    Article  CAS  Google Scholar 

  51. C. Kittel, Phys. Rev. 70, 965 (1946)

    Article  CAS  Google Scholar 

  52. R. Theissmann, L.A. Schmitt, J. Kling, R. Schierholz, K.A. Schönau, H. Fuess, M. Knapp, H. Kungl, M.J. Hoffmann, J. Appl. Phys. 102, 024111 (2007)

    Article  Google Scholar 

  53. Y. Sato, T. Hirayama, Y. Ikuhara, Phys. Rev. Lett. 107, 187601 (2011)

    Article  Google Scholar 

  54. X. Tan, H. He, J.-K. Shang, J. Mater. Res. 20, 1641 (2005)

    Article  CAS  Google Scholar 

  55. H. Fan, G. Park, J. Choi, H. Kim, Appl. Phys. Lett. 79, 1658 (2001)

    Article  CAS  Google Scholar 

  56. H. Yamada, T. Matsuoka, H. Kozuka, M. Yamazaki, K. Ohbayashi, T. Ida, J. Appl. Phys. 117, 154104 (2015)

    Article  Google Scholar 

  57. T. Wang, C. Wu, J. Xing, J. Wu, B. L-Chen, X. Xu, K. Wang, J. Zhu, J. Am. Ceram. Soc. 102, 6126 (2019)

    Article  CAS  Google Scholar 

  58. C.L. Zhao, J. Yin, Y.L. Huang, J.G. Wu, Dalton Trans. 48, 11250 (2019)

    Article  CAS  Google Scholar 

  59. Y.J. Dai, X.W. Zhang, K.P. Chen, Appl. Phys. Lett. 94, 042905 (2009)

    Article  Google Scholar 

  60. P.M. Raj, B.W. Lee, D. Balaraman, R.T. Rao, J. Eur. Ceram. Soc. 27, 169 (2011)

    CAS  Google Scholar 

  61. D.Y. Wang, D.M. Lin, K.W. Kwok, N.Y. Chan, J.Y. Dai, S. Li, H.L.W. Chan, Appl. Phys. Lett. 98, 022902 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 52172001, 51562004, 61571142), Guangxi Natural Science Outstanding Youth Foundation (Grant No. 2016GXNSFFA380007), Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology, Project No. 211006-Z), and Program for Bagui Scholars of Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minhong Jiang or Guanghui Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Jiang, M., Yao, X. et al. The effect of the annealing temperature on the structure and electrical properties of Li/Ta-modified (K0.5Na0.5)NbO3-based piezoelectric crystals. J Mater Sci: Mater Electron 33, 2816–2828 (2022). https://doi.org/10.1007/s10854-021-07485-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07485-y

Navigation