Skip to main content
Log in

Study of MAPb(I1−xBrx)3 thin film and perovskite solar cells based on hole transport material-free and carbon electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Perovskite solar cells (PSCs) based on hole-transporting-materials (HTM)-free and carbon electrodes have attracted intensive attention due to their low material cost, simple manufacturing process, and high stability. However, their power conversion efficiencies (PCE) need further improvement. In this work, the effect of Br-component x on properties of the MAPb(I1−xBrx)3 thin films as well as photovoltaic performance of PSCs were studied. The MAPb(I1−xBrx)3 thin films were prepared using two-step solution deposition method in ambient air. The Br component x was varied from 0 to 1 by changing the PbBr2 to PbI2 molar ratio in the precursor solution. PSCs based on the HTM-free and carbon electrodes were fabricated in ambient air in this work, aiming to realize reduction of fabrication cost and improve the stability of PSCs. The results indicated that when Br component x increase, the XRD diffraction peaks of MAPb(I1−xBrx)3 thin films continuously shift to larger diffraction angle, meanwhile, the absorption edge and PL peak continuously shift toward to the shorter wavelength. The PSCs based on MAPbI2.7Br0.3 exhibits an optimal photovoltaic performance, yielding Voc of 0.95 V, Jsc of 17.61 mA/cm-2, FF of 0.70, and PCE of 11.70%. Its PCE remains 93.3% of the initial efficiency after being exposed in the atmosphere for 700 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  CAS  Google Scholar 

  2. H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, T.J. Shin, S.I. Seok, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021)

    Article  CAS  Google Scholar 

  3. S.A.A. Shah, M.H. Sayyad, K. Khan, J.H. Sun, Z.Y. Guo, Application of MXenes in perovskite solar cells: a short review. Nanomaterials 11, 2151 (2021)

    Article  CAS  Google Scholar 

  4. M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016)

    CAS  Google Scholar 

  5. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476 (2015)

    Article  CAS  Google Scholar 

  6. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)

    Article  CAS  Google Scholar 

  7. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014)

    Article  CAS  Google Scholar 

  8. G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)

    Article  CAS  Google Scholar 

  9. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)

    Article  CAS  Google Scholar 

  10. Q.F. Dong, Y.J. Fang, Y.C. Shao, P. Mulligan, J. Qiu, L. Cao, J.S. Huang, Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015)

    Article  CAS  Google Scholar 

  11. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)

    Article  CAS  Google Scholar 

  12. A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, P.R.F. Barnes, Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mat. 27, 3397–3407 (2015)

    Article  CAS  Google Scholar 

  13. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    Article  CAS  Google Scholar 

  14. L. Etgar, P. Gao, Z.S. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Gratzel, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012)

    Article  CAS  Google Scholar 

  15. B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, A. Latini, On the thermal and thermodynamic (In) stability of methylammonium lead halide perovskites. Sci. Rep. 6, 31896 (2016)

    Article  CAS  Google Scholar 

  16. X. Wang, L.Y. Wang, T. Shan, S.B. Leng, H.L. Zhong, Q.Y. Bao, Z.H. Lu, L.L. Deng, C.C. Chen, Low-temperature aging provides 22% efficient bromine-free and passivation layer-free planar perovskite solar cells. Nano-Micro Lett. 12, 84 (2020)

    Article  CAS  Google Scholar 

  17. R. Xia, X.X. Gao, Y. Zhang, N. Drigo, V.I.E. Queloz, F.F. Tirani, R. Scopelliti, Z.J. Huang, X.D. Fang, S. Kinge, Z.F. Fei, C. Roldan-Carmona, M.K. Nazeeruddin, P.J. Dyson, An efficient approach to fabricate air-stable perovskite solar cells via addition of a self-polymerizing ionic liquid. Adv. Mater. 32, 2003801 (2020)

    Article  CAS  Google Scholar 

  18. S.W. Wang, H.J. Liu, H. Bala, B.B. Zong, L.W. Huang, Z.A. Guo, W.Y. Fu, B. Zhang, G. Sun, J.L. Cao, Z.Y. Zhang, A highly stable hole-conductor-free CsxMA1-xPbI3 perovskite solar cell based on carbon counter electrode. Electrochim. Acta 335, 135686 (2020)

    Article  CAS  Google Scholar 

  19. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)

    Article  CAS  Google Scholar 

  20. B. Suarez, V. Gonzalez-Pedro, T.S. Ripolles, R.S. Sanchez, L. Otero, I. Mora-Sero, Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J. Phys. Chem. Lett. 5, 1628–1635 (2014)

    Article  CAS  Google Scholar 

  21. V. Adinolfi, O. Ouellette, M.I. Saidaminov, G. Walters, A.L. Abdelhady, O.M. Bakr, E.H. Sargent, Fast and sensitive solution-processed visible-blind perovskite UV photodetectors. Adv. Mater. 28, 7264–7268 (2016)

    Article  CAS  Google Scholar 

  22. X.H. Zhang, S.Z. Yang, H. Zhou, J.W. Liang, H.W. Liu, H. Xia, X.L. Zhu, Y. Jiang, Q.L. Zhang, W. Hu, X.J. Zhuang, H.J. Liu, W.D. Hu, X. Wang, A.L. Pan, Perovskite-erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band. Adv. Mater. 29, 1604431 (2017)

    Article  Google Scholar 

  23. Z.Y. Cheng, J. Lin, Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12, 2646–2662 (2010)

    Article  CAS  Google Scholar 

  24. G.Z. Zhang, P.F. Xie, Z.S. Huang, Z.C. Yang, Z.X. Pan, Y.P. Fang, H.S. Rao, X.H. Zhong, Modification of energy level alignment for boosting carbon-based CsPbI2Br solar cells with 14% certified efficiency. Adv. Funct. Mater. 31, 2011187 (2021)

    Article  CAS  Google Scholar 

  25. A.Y. Mei, X. Li, L.F. Liu, Z.L. Ku, T.F. Liu, Y.G. Rong, M. Xu, M. Hu, J.Z. Chen, Y. Yang, M. Gratzel, H.W. Han, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014)

    Article  CAS  Google Scholar 

  26. X.Y. Chen, Y.K. Xia, Q.Y. Huang, Z. Li, A.Y. Mei, Y. Hu, T. Wang, R. Cheacharoen, Y.G. Rong, H.W. Han, Tailoring the dimensionality of hybrid perovskites in mesoporous carbon electrodes for type-II band alignment and enhanced performance of printable hole-conductor-free perovskite solar cells. Adv. Energy Mater. 11, 2100292 (2021)

    Article  CAS  Google Scholar 

  27. T. Ye, Y.C. Hou, A. Nozariasbmarz, D. Yang, J.J. Yoon, L.Y. Zheng, K. Wang, K. Wang, S. Ramakrishna, S. Priya, Cost-effective high-performance charge carrier-transport-layer-free perovskite solar cells achieved by suppressing ion migration. ACS Energy Lett. 6, 3044–3052 (2021)

    Article  CAS  Google Scholar 

  28. Y.C. Kim, N.J. Jeon, J.H. Noh, W.S. Yang, J. Seo, J.S. Yun, A. Ho-Baillie, S.J. Huang, M.A. Green, J. Seidel, T.K. Ahn, S.I. Seok, Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater. 6, 1502104 (2016)

    Article  Google Scholar 

  29. J.Y. Wei, Effect of shunt resist on I-V Characteristics of solar cell. J. Yunnan Normal Univ. 32, 22 (2012)

    Google Scholar 

  30. K. Bouzidi, M. Chegaar, A. Bouhemadou, Solar cells parameters evaluation considering the series and shunt resistance. Sol. Energy Mater. Sol. Cells 91, 1647–1651 (2007)

    Article  CAS  Google Scholar 

  31. M. Zhang, M.Q. Lyu, H. Yu, J.H. Yun, Q. Wang, L.Z. Wang, Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter. Chem. Eur. J. 21, 434–439 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of China (No. 22005062).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by XH, AW, LJ, YZ. The first draft of the manuscript was written by XH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aixiang Wei.

Ethics declarations

The paper reflects the authors’ research and analysis in a truthful and complete manner.

Conflict of interest

There are no conflicts to declare.

Informed consent

Not applicable in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Wei, A., Jun, L. et al. Study of MAPb(I1−xBrx)3 thin film and perovskite solar cells based on hole transport material-free and carbon electrode. J Mater Sci: Mater Electron 33, 2654–2666 (2022). https://doi.org/10.1007/s10854-021-07473-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07473-2

Navigation