Skip to main content
Log in

Enhancing the electrochemical performance of ZnO anode by novel additive of MoS2–SnO2 nanocomposite for the zinc alkaline battery application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO nanorods and ZnO microrods are synthesized as the anode material for the Zn alkaline battery application. The present work studies the electrochemical performance of ZnO with regard to its size, morphology and MoS2–SnO2 nanocomposite as its additive towards the alkaline battery application. The properties, such as oxidation–reduction reaction, anti-corrosion behaviour, charge-transfer resistance and suppression of hydrogen evolution reaction (HER), are studied in detail. The structural characterization of ZnO samples is performed by using X-ray diffractometry. The morphological analysis of ZnO and MoS2–SnO2 nanocomposite is performed by using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), respectively. The atomic absorption spectroscopy (AAS) is employed to determine the solubility of ZnO samples in KOH solution. The electrochemical properties of the bare ZnO and the ZnO with MoS2–SnO2 additive (MoS2–SnO2/ZnO) samples are characterized by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), cathodic polarization and Tafel polarization techniques. The ZnO with nanorod morphology shows better electrochemical performance than ZnO microrods and ZnO nanoparticles with sphere-like or plate-like morphology. The addition of MoS2–SnO2 nanocomposite with the ZnO improved the electrochemical activity, suppressed the HER activity and improved the anti-corrosion behaviour of the ZnO samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Wang, Y. Qiu, S.K. Ameri, H. Jang, Z. Dai, Y.A. Huang, N. Lu, N.P.J. Flex, Electronic 2, 1 (2018)

    Google Scholar 

  2. K. Xu, Y. Lu, K. Takei, Adv. Mater. Technol. 4, 1 (2019)

    CAS  Google Scholar 

  3. A. Yadav, B. De, S.K. Singh, P. Sinha, K.K. Kar, A.C.S. Appl, Mater. Interfaces 11, 7974 (2019)

    Article  CAS  Google Scholar 

  4. D. Lyu, B. Ren, S. Li, Acta Mech. 230, 701 (2019)

    Article  Google Scholar 

  5. A.M. Gaikwad, A.M. Zamarayeva, J. Rousseau, H. Chu, I. Derin, D.A. Steingart, Adv. Mater. 24, 5071 (2012)

    Article  CAS  Google Scholar 

  6. K.N. Dinh, Z. Pei, Z. Yuan, V.C. Hoang, L. Wei, Q. Huang, X. Liao, C. Liu, Y. Chen, Q. Yan, J. Mater. Chem. A 8, 7297 (2020)

    Article  CAS  Google Scholar 

  7. F. Mo, H. Li, Z. Pei, G. Liang, L. Ma, Q. Yang, D. Wang, Y. Huang, C. Zhi, Sci. Bull. 63, 1077 (2018)

    Article  CAS  Google Scholar 

  8. K.T. Braam, S.K. Volkman, V. Subramanian, J. Power Sources 199, 367 (2012)

    Article  CAS  Google Scholar 

  9. A.M. Zamarayeva, A.E. Ostfeld, M. Wang, J.K. Duey, I. Deckman, B.P. Lechêne, G. Davies, D.A. Steingart, A.C. Arias, Sci. Adv. 3, 1 (2017)

    Article  Google Scholar 

  10. L. Zhou, S. Zeng, D. Zheng, Y. Zeng, F. Wang, W. Xu, J. Liu, X. Lu, Chem. Eng. J. 400, 125832 (2020)

    Article  CAS  Google Scholar 

  11. W. Lao-atiman, T. Julaphatachote, P. Boonmongkolras, S. Kheawhom, J. Electrochem. Soc. 164, A859 (2017)

    Article  CAS  Google Scholar 

  12. S. Kheawhom, S. Suren, MRS Adv. 1, 3585 (2016)

    Article  CAS  Google Scholar 

  13. A.R. Mainar, L.C. Colmenares, J.A. Blázquez, I. Urdampilleta, Int. J. Energy Res. 42, 903 (2018)

    Article  Google Scholar 

  14. A.R. Mainar, E. Iruin, L.C. Colmenares, A. Kvasha, I. de Meatza, M. Bengoechea, O. Leonet, I. Boyano, Z. Zhang, J.A. Blazquez, J. Energy Storage 15, 304 (2018)

    Article  Google Scholar 

  15. J. Dundálek, I. Šnajdr, O. Libánský, J. Vrána, J. Pocedič, P. Mazúr, J. Kosek, J. Power Sources 372, 221 (2017)

    Article  Google Scholar 

  16. Y. Zhang, Y. Wu, W. You, M. Tian, P.W. Huang, Y. Zhang, Z. Sun, Y. Ma, T. Hao, N. Liu, Nano Lett. 20, 4700 (2020)

    Article  CAS  Google Scholar 

  17. J.W. Gallaway, A.M. Gaikwad, B. Hertzberg, C.K. Erdonmez, Y.C.K. Chen-Wiegart, L.A. Sviridov, K. Evans-Lutterodt, J. Wang, S. Banerjee, D.A. Steingartb, J. Electrochem. Soc. 161, A275 (2014)

    Article  CAS  Google Scholar 

  18. M. Schmid, M. Willert-Porada, Electrochim. Acta 260, 246 (2018)

    Article  CAS  Google Scholar 

  19. D.E. Turney, J.W. Gallaway, G.G. Yadav, R. Ramirez, M. Nyce, S. Banerjee, Y.C.K. Chen-Wiegart, J. Wang, M.J. D’Ambrose, S. Kolhekar, J. Huang, X. Wei, Chem. Mater. 29, 4819 (2017)

    Article  CAS  Google Scholar 

  20. M. Elrouby, H.A. El Shafy Shilkamy, A. Elsayed, J. Alloys Compd. 854, 157285 (2021)

    Article  CAS  Google Scholar 

  21. S.M. Lee, Y.J. Kim, S.W. Eom, N.S. Choi, K.W. Kim, S.B. Cho, J. Power Sources 227, 177 (2013)

    Article  CAS  Google Scholar 

  22. K. Zhao, C. Wang, Y. Yu, M. Yan, Q. Wei, P. He, Y. Dong, Z. Zhang, X. Wang, L. Mai, Adv. Mater. Interfaces 5, 1 (2018)

    Google Scholar 

  23. Z. Zhang, Z. Yang, R. Wang, Z. Feng, X. Xie, Q. Liao, Electrochim. Acta 134, 287 (2014)

    Article  CAS  Google Scholar 

  24. H. Wei, X. Hu, X. Zhang, Z. Yu, T. Zhou, Y. Liu, Y. Liu, Y. Wang, J. Xie, L. Sun, M. Liang, P. Jiang, Energy Technol. 7, 1 (2019)

    Article  Google Scholar 

  25. J. Long, Z. Yang, J. Huang, X. Zeng, J. Power Sources 359, 111 (2017)

    Article  CAS  Google Scholar 

  26. S. Ullah, F. Ahmed, A. Badshah, A. Ali-Altaf, R. Raza, B. Lal, R. Hussain, PLoS ONE 8, 1 (2013)

    Google Scholar 

  27. Y. Im, S. Kang, B.S. Kwak, K.S. Park, T.W. Cho, J.S. Lee, M. Kang, Korean J. Chem. Eng. 33, 1447 (2016)

    Article  CAS  Google Scholar 

  28. J. Long, Z. Yang, Z. Zhang, J. Huang, J. Electrochem. Soc. 164, A3068 (2017)

    Article  CAS  Google Scholar 

  29. Y. Zhang, Y. Wu, H. Ding, Y. Yan, Z. Zhou, Y. Ding, N. Liu, Nano Energy 53, 666 (2018)

    Article  CAS  Google Scholar 

  30. Y. Yan, Y. Zhang, Y. Wu, Z. Wang, A. Mathur, H. Yang, P. Chen, S. Nair, N. Liu, A.C.S. Appl, Energy Mater. 1, 6345 (2018)

    Google Scholar 

  31. S.S. Nardekar, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, V.K. Mariappan, S.J. Kim, J. Mater. Chem. A 8, 13121 (2020)

    Article  CAS  Google Scholar 

  32. C. Prabukumar, M. Mohamed Jaffer Sadiq, D. Krishna Bhat, K. Udaya-Bhat, Mater. Res. Express 6, 085526 (2019)

    Article  CAS  Google Scholar 

  33. H.N. Fard, G.B. Pour, M.N. Sarvi, P. Esmaili, Ionics 25, 2951 (2019)

    Article  CAS  Google Scholar 

  34. M.A.A.M. Abdah, N.A. Zubair, N.H.N. Azman, Y. Sulaiman, Mater. Chem. Phys. 192, 161 (2017)

    Article  Google Scholar 

  35. Y. Li, H. Dai, Chem. Soc. Rev. 43, 5257 (2014)

    Article  CAS  Google Scholar 

  36. J. Long, Z. Yang, X. Zeng, J. Huang, RSC Adv. 6, 92896 (2016)

    Article  CAS  Google Scholar 

  37. T. Zhao, E. Shangguan, Y. Li, J. Li, Z. Chang, Q. Li, X.Z. Yuan, H. Wang, Electrochim. Acta 182, 173 (2015)

    Article  CAS  Google Scholar 

  38. M. Chamoun, B.J. Hertzberg, T. Gupta, D. Davies, S. Bhadra, B. Van-Tassell, C. Erdonmez, D.A. Steingart, NPG Asia Mater. 7, e178 (2015)

    Article  Google Scholar 

  39. M. Liu, X. Pu, Z. Cong, Z. Liu, T. Liu, Y. Chen, J. Fu, W. Hu, Z.L. Wang, A.C.S. Appl, Mater. Interfaces 11, 5095 (2019)

    Article  CAS  Google Scholar 

  40. K. Peng, Z. Zhang, Z. Zhao, C. Yang, Z. Tian, Y. Lai, Trans. Nonferrous Met. Soc. China 29, 2151 (2019)

    Article  CAS  Google Scholar 

  41. M. Wang, H. Fei, P. Zhang, L. Yin, Electrochim. Acta 209, 389 (2016)

    Article  CAS  Google Scholar 

  42. Z. Feng, Z. Yang, J. Huang, X. Xie, Z. Zhang, J. Electrochem. Soc. 161, A1981 (2014)

    Article  CAS  Google Scholar 

  43. X. Zheng, Y. Ji, J. Tang, J. Wang, B. Liu, H.G. Steinrück, K. Lim, Y. Li, M.F. Toney, K. Chan, Y. Cui, Nat. Catal. 2, 55 (2019)

    Article  CAS  Google Scholar 

  44. Y.F. Yuan, J.P. Tu, H.M. Wu, Y. Li, D.Q. Shi, Nanotechnology 16, 803 (2005)

    Article  CAS  Google Scholar 

  45. G.G. Kumar, S. Sampath, Solid State Ion. 160, 289 (2003)

    Article  CAS  Google Scholar 

  46. C. Yang, Z. Zhang, Z. Tian, K. Zhang, J. Li, Y. Lai, J. Electrochem. Soc. 165, A86 (2018)

    Article  CAS  Google Scholar 

  47. X. Zeng, Z. Yang, F. Liu, J. Long, Z. Feng, M. Fan, RSC Adv. 7, 44514 (2017)

    Article  CAS  Google Scholar 

  48. S. Huang, J. Zhu, J. Tian, Z. Niu, Chem. Eur. J. 25, 14480 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wants to thank the centralized research facility (CRF), NITK, for the FESEM characterization. The author is also thankful to Prof. B. Raj Mohan, Department of Chemical engineering, NITK, for the instrumentation of atomic absorption spectroscopy (AAS).

Funding

This work is not supported by any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

CP involved in conceptualization, material synthesis, investigations and manuscript writing. SM participated in contribution in material synthesis. UB took part in technical support, supervision and manuscript revision.

Corresponding author

Correspondence to Udaya K. Bhat.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript.

Consent to participate

All the authors consent to participate and submit this manuscript to Journal of Materials Science: Materials in Electronics.

Consent for publication

All the authors consent for publication of this paper in Journal of Materials Science: Materials in Electronics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabukumar, C., Meti, S. & Bhat, U.K. Enhancing the electrochemical performance of ZnO anode by novel additive of MoS2–SnO2 nanocomposite for the zinc alkaline battery application. J Mater Sci: Mater Electron 33, 2534–2549 (2022). https://doi.org/10.1007/s10854-021-07460-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07460-7

Navigation