Skip to main content

Advertisement

Log in

Analysis on down converting Sm3+-incorporated TiO2 mesoporous nanostructures for DSSC applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Dye Sensitized Solar Cells (DSSCs) gaining scientific interest due to its immense property of increased photoelectric conversion efficiency. It may be deficient in the effective utilization of the UV and NIR component of the solar spectrum. The inimitable Titanium dioxide (TiO2) nanostructures have been highly admired as a significant photoanode material for Dye Sensitized Solar Cells. In this study, the effective down conversion ability of the lanthanide Sm3+ incorporated TiO2 nanoparticles has been elucidated by the structural, morphological and optical analysis of the bare and doped samples prepared via modified sol–gel method. The anatase phase of the bare TiO2 exhibits a gradual change to the orthorhombic brookite phase in Sm3+ incorporated sample. The mesoporous nanoparticulates of the Sm3+ incorporated TiO2 shows a lower binding energy than the undoped sample. The PL analysis demonstrates that the Sm3+ doping converts the UV absorption to three strong orange-red emission lines (580, 613 and 665 nm) along with the broad host emission peak of TiO2 at 435 nm, which can be directly synchronized with the absorption wavelengths of N719 dye. The rare earth Sm3+ ion substitution in the bare TiO2 is an effective strategy on the enhancement of photo catalytic activity of TiO2 nanostructure by the additional UV energy harvesting from the solar spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.A. Ansari, M.K. Nazeeruddin, M.M. Tavakoli, Organic-inorganic upconversion nanoparticles hybrid in dye-sensitized solar cells. Coord. Chem. Rev. 436, 213805 (2021)

    Article  CAS  Google Scholar 

  2. J. Prakash, A. Kumar, H. Dai, B.C. Janegitz, V. Krishnan, H.C. Swart, S. Sun, Novel rare earth metal doped one dimensional TiO2 nanostructures: fundamentals and multifunctional applications. Mater. Today Sustain. 13, 100066 (2021)

    Article  Google Scholar 

  3. N. Vlachopoulos, A. Hagfeldt, I. Benesperi, M. Freitag, G. Hashmi, G. Jia, R.A. Wahyuono, J. Plentz, B. Dietzek, New approaches in component design for dye-sensitized solar cells. Sustain. Energy Fuels 5(2), 367–383 (2021)

    Article  CAS  Google Scholar 

  4. S.Y. Chen, J. Lin, J. Wu, Facile synthesis of Y2O3:Dy3+nanorods and its application indye- sensitized solar cells. Appl. Surf. Sci. 293, 202–206 (2014)

    Article  CAS  Google Scholar 

  5. M.S. Ahmad, A.K. Pandey, N.A. Rahim, Advancements in the development ofTiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC)applications-a review. Renew. Sust. Energy Rev. 77, 89–108 (2017)

    Article  Google Scholar 

  6. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites asvisible- light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  Google Scholar 

  7. J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskitequantum-dot- sensitized solar cell. Nanoscale 3(10), 4088–4093 (2011)

    Article  CAS  Google Scholar 

  8. D. Leung, X. Fu, C. Wang, M. Ni, M. Leung, X. Wang, Hydrogen productionover titania-based photocatalysts. ChemSus Chem. 3(6), 681–694 (2010)

    Article  CAS  Google Scholar 

  9. X.Q. Cheng, C.Y. Ma, X.Y. Yi, F. Yuan, Y. Xie, J.M. Hu, Structural, morphological, optical and photocatalytic properties of Gd-dopedTiO2 films. Thin Solid Films 615, 13–18 (2016)

    Article  CAS  Google Scholar 

  10. Y. Qin, Z. Hu, B.H. Lim, W.S. Chang, K.K. Chong, P. Zhang, Sol-hydrothermalsynthesis of TiO2:Sm3+ nanoparticles and their enhanced photovoltaic properties. J. Alloys Compd. 686, 803–809 (2016)

    Article  CAS  Google Scholar 

  11. M.I. Khan, A. Suleman, M.S. Hasan, S.S. Ali, T.I. Al-Muhimeed, A.A. AlObaid, M. Iqbal, M.M. Almonee, N. Alwadai, Effect of Ce doping on the structural, optical, and photovoltaic properties of TiO2 based dye-sensitized solar cells. Mater. Chem. Phys. 274, 125177 (2021)

    Article  CAS  Google Scholar 

  12. B. Roose, S. Pathak, U. Steiner, Doping of TiO2 for sensitized solar cells. Chem Soc Rev. 44, 8326–8349 (2015)

    Article  CAS  Google Scholar 

  13. R.S. Ningthoujam, A. Sharma, K.S. Sharma, K.C. Barick, P.A. Hassan, R.K. Vatsa, Roles of solvent, annealing and Bi3+ co-doping on the crystal structure and luminescence properties of YPO4:Eu3+ nanoparticles. RSC Adv. 5, 68234–68242 (2015)

    Article  CAS  Google Scholar 

  14. B. Viana, S.K. Sharma, D. Gourier, T. Maldiney, E. Testo, D. Scherman, C. Richard, Long term invivo imagingwithCr3+dopedspinelnanoparticles exhibiting persistent luminescence. J. Lumin. 170, 879–887 (2016)

    Article  CAS  Google Scholar 

  15. Y.Y. Zhang, B.T. Wang, J. Peng, X.B. Wang, J. Pang, K.X. Dong, Rare earth doped NaYF nanorods: synthesis and up-conversion luminescence spanning deep- ultraviole tto near-infrared regions. Opt Mater. 40, 107–111 (2015)

    Article  Google Scholar 

  16. J. Wang, J. Lin, J. Wu, M. Huang, Z. Lan, Y. Chen, Application of Yb3+, Er3+-doped yttrium oxy fluoride nanocrystals in dye-sensitized solar cells. Electrochim. Acta. 70(30), 131–135 (2012)

    Article  CAS  Google Scholar 

  17. M.I. Khan, B. Mehmood, M.A. Naeem, M. Younis, K.H. Mahmoud, Z.M. El-Bahy, W.S. Subhani, S. Hussain, N. Alwadai, H. Albalawi, M. Iqbal, Investigations the structural, optical and photovoltaic properties of La doped TiO2 photoanode based dye sensitized solar cells. Opt. Mater 122, 111610 (2021)

    Article  Google Scholar 

  18. S.B. Bernadsha, V.A.F. Samson, J. Madhavan, M.V.A. Raj, Comparative study of the morphological and optical properties of RE3+ (= ND3+, DY3+) doped TiO2: a pursuit for suitable anode material for DSSCs. Mater. Lett. 288, 129358 (2021)

    Article  Google Scholar 

  19. Q. Yao, J. Liu, Q. Peng, X. Wang, Y. Li, Nd- doped TiO2 nanorods: preparation and application in dye sensitized solar cells. Chem Asian J. 1(5), 737–741 (2006)

    Article  CAS  Google Scholar 

  20. H. Hafez, M. Saif, M. Abdel-Mottaleb, Down-convertinglanthanidedoped TiO2 photoelectrodes for efficiency enhancement of dye-sensitized solar cells. J Power Sources. 196(13), 5792–5796 (2011)

    Article  CAS  Google Scholar 

  21. J. Wu, J. Wang, J. Lin, Z. Lan, Q. Tang, M. Huang, Enhancement of the photovoltaic performance of dye-sensitized solar cells by doping Y0.78Yb0.20Er0.02F3 in the photoanode. Adv. Energy Mater. 2, 78–81 (2012)

    Article  CAS  Google Scholar 

  22. L. Havlak, V. Jary, M. Rejman, E. Mihokova, J. Barta, M. Nikl, Luminescence characteristics of doubly doped KLuS2:Eu, RE (RE = Pr, Sm, Ce). Opt Mater. 41, 94–97 (2015)

    Article  CAS  Google Scholar 

  23. H. Lin, D. Xu, D. Teng, S. Yang, Y. Zhang, Simultaneous size and luminescence control of NaYF4:Yb3+/RE3+(RE= Tm, Ho) microcrystals via Li+ doping. Opt Mater. 45, 229–234 (2015)

    Article  CAS  Google Scholar 

  24. Y.Y. Li, H.S. Hao, L. Qin, H.L. Wang, M.Q. Nie, Z.Q. Hu, Synthesis and characterization of Ho3+- doped strontium titanate down conversion nanocrystals and its application in dye- sensitized solar cells. J Alloys Compd. 622, 1–7 (2015)

    Article  CAS  Google Scholar 

  25. L. Song, X. Zhao, L. Cao, J. Moon, B. Gu, W. Wang, Synthesis of rare earth dopedTiO2 nanorods as photo-catalysts for lignin degradation. Nanoscale 7, 16695–16703 (2015)

    Article  CAS  Google Scholar 

  26. A. Kay, M. Gratzel, Dye-sensitized core−shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem. Mater. 14(7), 2930–2935 (2002)

    Article  CAS  Google Scholar 

  27. V. Kumar, O.M. Ntwaeaborwa, J. Holsa, D.E. Motaung, H.C. Swart, The role of oxygen and titanium related defects on the emission of TiO2:Tb3+ nano-phosphor for blue lighting applications. Opt Mater. 46, 510–516 (2015)

    Article  CAS  Google Scholar 

  28. D. Hamdi, L. Mansouri, V. Srivastava, M. Sillanpaa, L. Bousselmi, Enhancement of Eu and Ce doped TiO2 thin films photoactivity: application on Amido Black photodegradation. Inorg. Chem. Commun. 133, 108912 (2021)

    Article  CAS  Google Scholar 

  29. K. Chen, H. Zhang, H. Tong, L. Wang, L. Tao, K. Wang, Y. Zhang, X. Zhou, Down-conversion Ce-doped TiO2 nanorod arrays and commercial available carbon based perovskite solar cells: Improved performance and UV photostability. Int. J. Hydrog. Energy. 46(7), 5677–5688 (2021)

    Article  CAS  Google Scholar 

  30. Y. Qin, Z. Hu, B.H. Lim, B. Yang, K.-K. Chong, W.S. Chang, P. Zhang, H. Zhang, Performance improvement of dye-sensitized solar cell by introducing Sm3+/Y3+ co-doped TiO2 film as an efficient blocking layer. Thin Solid Films 631, 141–146 (2017)

    Article  CAS  Google Scholar 

  31. S.M. Chang, C.L. Lin, Y.J. Chen, H.C. Wang, W.C. Chang, L.Y. Lin, Improved photovoltaic performances of dye—sensitized solar cells with ZnO films co-sensitized by metal – free organic sensitizer and N719 dye. Org. Electron. 25, 254–260 (2015)

    Article  CAS  Google Scholar 

  32. S. Mehra, S. Bishnoi, A. Jaiswal, M. Jagadeeswararao, A. K. Srivastava, S. N. Sharma, P. Vashishtha, A review on spectral converting nanomaterials as a photoanode layer in dye-sensitized solar cells with implementation in energy storage devices. Energy Storage (2020) 1–28.

  33. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  CAS  Google Scholar 

  34. S.G. Mital, T. Manoj, A review of TiO2 nanoparticles. Chin. Sci Bull. 56(16), 1639–1657 (2011)

    Article  Google Scholar 

  35. B.T. Navarrete, M.D.P. Haro-Vázquez, R.M.F. Navarro, F.P. Delgado, H.A. Huerta, S.P. Sicairos, Effect of Nd3+ doping on structure, microstructure, lattice distortion and electronic, properties of TiO2 nanoparticles. J. Rare Earths. 35(3), 259–270 (2017)

    Article  Google Scholar 

  36. D.A.H. Hanaor, C.C. Sorrell, Review of the anatase torutile phase transformation. J Mater Sci. 46, 855–874 (2011)

    Article  CAS  Google Scholar 

  37. M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2. J Phys Condens Matter. 24, 195503 (2012)

    Article  CAS  Google Scholar 

  38. G. Sai, L. Bang-Gui, Electronic structures and optical properties of TiO2: Improved density- functional-theory investigation. Chin Phys B. 21(5), 057104-1–7 (2012)

    Google Scholar 

  39. X.Z. Ding, X.H. Liu, Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders. J. Mater. Res. 13, 2556–2559 (1998)

    Article  CAS  Google Scholar 

  40. C. Brinker, G. Scherer, Sol–gel science, the physics and chemistry of sol–gel processing (Academic Press, Boston, 1990), pp. 1–912

    Google Scholar 

  41. S. Umale, V. Sudhakar, S.M. Sontakke, K. Krishnamoorthy, A.B. Pandit, Improved efficiency of DSSC using combustion synthesized TiO2. Mater Res Bull. 109, 222–226 (2019)

    Article  CAS  Google Scholar 

  42. Q. Xiao, Z. Si, Z. Yu, G. Qiu, Sol–gel auto-combustion synthesis of samarium-doped TiO2 nanoparticles and their photocatalytic activity under visible light irradiation. Mater. Sci. Eng. B. 137, 189–194 (2007)

    Article  CAS  Google Scholar 

  43. Q. Xiao, Z. Si, J. Zhang, C. Xiao, Z. Yu, G. Qiu, J. Mater. Sci. 42, 9194–9199 (2007)

    Article  CAS  Google Scholar 

  44. A.T. Paxton, L. Thien-Nga, Electronic structure of reduced titanium dioxide. Phys Rev B 57(3), 1579 (1998)

    Article  CAS  Google Scholar 

  45. T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO2 with meso-super structured organo metaltri-halide perovskite solar cells. Nat Commun. 4, 2885 (2013)

    Article  Google Scholar 

  46. E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, M. Visca, Visible light induced water cleavagein colloidal solutions of chromium-doped titanium dioxide particles. J. Am. Chem. Soc. 104, 2996–3002 (1982)

    Article  CAS  Google Scholar 

  47. V. Kiisk, V. Reedo, O. Sild, I. Sildos, Luminescence properties of sol–gel-derived TiO: Sm powder. Opt Mater. 31, 1376–1379 (2009)

    Article  CAS  Google Scholar 

  48. L. Li, J. Liu, Y. Su, G. Li, X. Chen, X. Qiu, T. Yan, Surface doping for photocatalytic purposes: relations between particle size, surface modifications, and photo activity of SnO2:Zn2+ nanocrystals. Nanotec. 20, 155706–155803 (2009)

    Article  Google Scholar 

  49. D.D. Ramteke, V.Y. Ganvir, S.R. Munishwar, R.S. Gedam, Phys. Proceedia 76, 25–30 (2015)

    Article  CAS  Google Scholar 

  50. T.T.T. Chanu, N.R. Singh, J. Solid State Chem. 284, 121190 (2020)

    Article  Google Scholar 

  51. Y. Ma, J. Zhanga, B. Tian, F. Chen, L. Wang, Synthesis and characterization ofthermally stable Sm, N co-dopedTiO2 with highly visible light activity. J. Hazard Mater. 182, 386–393 (2010)

    Article  CAS  Google Scholar 

  52. H.T. Gao, W.C. Liu, G.J. Liu, Facile synthesis and enhanced photocatalysis of Sm dopedTiO2. Adv. Mater. Res. 490, 3272–3276 (2012)

    Article  Google Scholar 

  53. Ishii, T., Poolton, H., Zhao, K., Hamilton. Effects of oxidization and deoxidization on charge-propagation dynamics in rare-earth-doped titanium dioxide with room-temperature luminescence, Appl. Phys.111 (2012) 053514–053519.

  54. L. Hu, H. Song, G. Pan, B. Yan, R. Qin, Q. Dai, Photoluminescence properties of samarium-doped TiO2 semiconductor nanocrystalline powders. J. Lumin. 127, 371–376 (2007)

    Article  CAS  Google Scholar 

  55. B. Tan, Y. Wu, Dye-sensitized solar cells based on anatase TiO2nanoparticle/nano wire composites. J. Phys. Chem B. 110, 15932–15938 (2006)

    Article  CAS  Google Scholar 

  56. J. Day, S. Senthilarasu, T.K. Mallick, Improving spectral modification for applications in solar cells: a review. Renew. Energy 132, 186–205 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

P. S. thanks CSIR, New-Delhi for providing the SRF position [09/0472(0181) 2018-EMR-I] to carry out this research work and K.P.A. thanks NJUST, Nanjing, China for the Post-Doctoral Fellowship. K. P. A. was supported by the European Structural and Investment Funds, OP RDE funded project 'CHEMFELLS IV' (No. CZ.02.2.69/0.0/0.0/ 20_079/0017899).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Christopher Selvin, Xia Hui or K. P. Abhilash.

Ethics declarations

Conflict of interest

The Authors state there are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yogeswari, S., Sivaraj, P., Somasundaram, K. et al. Analysis on down converting Sm3+-incorporated TiO2 mesoporous nanostructures for DSSC applications. J Mater Sci: Mater Electron 33, 1352–1365 (2022). https://doi.org/10.1007/s10854-021-07453-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07453-6

Navigation