Skip to main content
Log in

Effects of samarium dopant on photocatalytic activity of TiO2 nanocrystallite for methylene blue degradation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sm3+-doped TiO2 nanocrystalline was synthesized by a sol–gel auto-combustion method and characterized by X-ray diffraction, Brunauer-Emmett-Teller method (BET), UV–vis diffuse reflectance spectroscopy (DRS), and also photoluminescence (PL) emission spectroscopy. The photocatalytic activity of Sm3+–TiO2 catalyst was evaluated by measuring degradation rates of methylene blue (MB) under either UV or visible light. The results showed that doping with the samarium ions significantly enhanced the photocatalytic activity for MB degradation under UV or visible light irradiation. This was ascribed to the fact that a small amount of samarium dopant simultaneously increased MB adsorption capacity and separation efficiency of electron-hole pairs. The results of DRS showed that Sm3+-doped TiO2 had significant absorption between 400 nm and 500 nm, which increased with the increase of samarium ion content. The adsorption experimental demonstrated that Sm3+–TiO2 had a higher MB adsorption capacity than undoped TiO2 and adsorption capacity of MB increased with the increase of samarium ion content. It is found that the stronger the PL intensity, the higher the photocatalytic activity. This could be explained by the points that PL spectra mainly resulted from surface oxygen vacancies and defects during the process of PL, while surface oxygen vacancies and defects could be favorable in capturing the photoinduced electrons during the process of photocatalytic reactions, so that the recombination of photoinduced electrons and holes could be effectively inhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoffmann MR, Choi ST, Martin W, Bahnemann DW (1995) Chem Rev 95:69

    Article  CAS  Google Scholar 

  2. Fujishima A, Rao TN, Truk DA (2000) J Photochem Photobiol C: Photochem Rev 1:1

    Article  CAS  Google Scholar 

  3. Choi W, Termin A, Hoffmann MR (1994) J Phys Chem 98:13669

    Article  Google Scholar 

  4. Hattori A, Tokihisa Y et al (2000) J Electrochem Soc 147:2279

    Article  CAS  Google Scholar 

  5. Wang C, Xu B-Q (2005) J Solid State Chem 178:3500

    Article  CAS  Google Scholar 

  6. Iliev V, Tomova D et al (2006) Appl Catal B: Environ 63:266

    Article  CAS  Google Scholar 

  7. Kim DH, Woo SI et al (2005) Solid State Commun 136:554

    Article  CAS  Google Scholar 

  8. Li FB, Li XZ, Hou MF, Cheah KW, Choy WCH (2005) Appl Catal A: Gen 285:181

    Article  CAS  Google Scholar 

  9. Zhang Y, Xu H, Xu Y, Zhang H, Wang Y (2005) J Photochem Photobiol A: Chem 170:279

    Article  CAS  Google Scholar 

  10. Yan X, He J, Evans DG, Duan X, Zhu Y (2005) Appl Catal B: Environ 55:243

    Article  CAS  Google Scholar 

  11. Xie Y, Yuan C, Li X (2005) Mater Sci Eng B 117:325

    Article  Google Scholar 

  12. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269

    Article  CAS  Google Scholar 

  13. Kamisaka H, Adachi T, Yamashita K (2005) J Chem Phys 123:084704

    Article  Google Scholar 

  14. Madhusudan Reddy K, Baruwati B, Jayalakshmi M, Mohan Rao M, Manorama SV (2005) J Solid Chem 178:3352

    Article  Google Scholar 

  15. Li W, Wang Y, Lin H, Ismat Shah S, Doren CP, Rykov SA, Chen JG, Barteau MA (2003) Appl Phys Lett 83:4143

    Article  CAS  Google Scholar 

  16. Xie YB, Yuan CW (2004) Appl Surf Sci 221:17

    Article  CAS  Google Scholar 

  17. Spurr RA, Myers H (1957) Anal Chem 29:760

    Article  CAS  Google Scholar 

  18. Yamashita H, Ichihashi Y, Zhang SG, Matrumura Y, Souma Y, Tatsumi T, Anpo M (1997) Appl Surf Sci 121/122:305

    Article  CAS  Google Scholar 

  19. Zhang LD, Mo CM (1995) Nanostruct Mater 6:831

    Article  Google Scholar 

  20. Danzhen L, Yi Z, Xianzhi F (2000) Chin J Mater Res 14:639

    Google Scholar 

  21. Jing L, Xin B, Yuan F, Xue L, Wang B, Fu H (2006) J Phys Chem B 110:17860

    Article  CAS  Google Scholar 

  22. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 107:4545

    Article  CAS  Google Scholar 

  23. Miyagi T, Kamei M, Mitsuhashi T, Ishigaki T, Yamazaki A (2004) Chem Phys Lett 390:399

    Article  CAS  Google Scholar 

  24. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C: Photochem Rev 1:1

    Article  CAS  Google Scholar 

  25. Kamat PV (1993) Chem Rev 93:267

    Article  CAS  Google Scholar 

  26. Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95:735

    Article  CAS  Google Scholar 

  27. Liu H, Cheng S, Wu M, Wu H, Zhang J, Li W, Cao C (2000) J Phys Chem A 104:7016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Provincial Excellent PhD Thesis Research Program of Hunan (No.2004-141) and the Postgraduate Educational Innovation Engineering of Central South University (No.2006-48). The authors are grateful to Dr. Huang Suping for her encouragement and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Q., Si, Z., Zhang, J. et al. Effects of samarium dopant on photocatalytic activity of TiO2 nanocrystallite for methylene blue degradation. J Mater Sci 42, 9194–9199 (2007). https://doi.org/10.1007/s10853-007-1919-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1919-9

Keywords

Navigation