Skip to main content
Log in

Reaction sintering and mechanism of microwave dielectric ceramic with K2NiF4 structure and perovskite structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We use reaction sintering method (RS) to prepared 0.85(1 − xCaTiO3−xLnAlO3)–0.15Ca1.15Ln0.85Al0.85Ti0.15O4 (Ln = Nd, Y) ceramics. CLnC ceramics have two phase structures of perovskite and K2NiF4. The ceramic grains are obvious solid solutions, and gradually enlarge with increasing the sintering temperature. CNdC ceramics exhibit good microwave dielectric properties in the sintering temperature range of 1475–1575 °C. As the sintering temperature increases from 1475 to 1500 °C, the density of CNdC ceramics tends to be stable, fluctuates around 4.6 g/cm3. The εr reaches maximum value at 1500 °C then gradually decreases. As the sintering temperature increases from 1500 to 1550 °C, the Q × f keeps a stable value from 41,953 to 44,188 GHz. As the sintering temperature was 1500 °C, the CNdC ceramics achieved the best microwave dielectric properties with εr = 37.15, Q × f = 44,188 GHz, τf = − 4 ppm/°C. The sintering temperature of CYC ceramics was relatively low and the ceramics sintered at 1450 °C achieved good microwave dielectric properties of εr = 38.3, Q × f = 29,620 GHz, τf = 0.03 ppm/excellent. It is worth noting that CYC ceramics have an excellent τf, which can ensure excellent temperature stability during application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Luo, L. He, H. Yang, H. Yu, Phase evolution and microwave dielectric properties of BaTi4O9 ceramics prepared by reaction sintering method. Int. J. Appl. Ceram. Technol. 16(1), 146–151 (2019)

    Article  CAS  Google Scholar 

  2. G. Wang, D. Zhang, G. Gan, Y. Yang, Y. Rao, F. Xu, X. Huang, Y. Liao, J. Li, C. Liu, L. Jin, H. Zhang, Synthesis, crystal structure and low loss of Li3Mg2NbO6 ceramics by reaction sintering process. Ceram. Int. 45(16), 19766–19770 (2019)

    Article  CAS  Google Scholar 

  3. K.G. Wang, T.T. Yin, H.F. Zhou, X.B. Liu, J.J. Deng, S.X. Li, C.M. Lu, X.L. Chen, Bismuth borate composite microwave ceramics synthesised by different ratios of H3BO3 for ULTCC technology. J. Eur. Ceram. Soc. 40(2), 381–385 (2020)

    Article  CAS  Google Scholar 

  4. W.B. Hong, L. Li, H. Yan, S.Y. Wu, H.S. Yang, X.M. Chen, Room-temperature-densified H3BO3 microwave dielectric ceramics with ultra-low permittivity and ultra-high qf value. J. Materiomics 6(2), 233–239 (2020)

    Article  Google Scholar 

  5. G. Wang, D. Zhang, G. Gan, Y. Yang, Y. Rao, F. Xu, H. Zhang, Synthesis, crystal structure 5and low loss of Li3Mg2NbO6 ceramics by reaction sintering process. Ceram. Int. 45(16), 19766–19770 (2019)

    Article  CAS  Google Scholar 

  6. L.X. Pang, D. Zhou, Modification of NdNbO4 microwave dielectric ceramic by Bi substitutions. J. Am. Ceram. Soc. 102(5), 2278–2282 (2019)

    Article  CAS  Google Scholar 

  7. C.F. Xing, Y.H. Zhang, B.J. Tao, H.T. Wu, Y.Y. Zhou, Crystal structure, infrared spectra and microwave dielectric properties of low-firing La2Zr3(MoO4)9 ceramics prepared by reaction-sintering process. Ceram. Int. 45(17), 22376–22382 (2019)

    Article  CAS  Google Scholar 

  8. I.N. Lin, C.B. Chang, K.C. Leou, H.F. Cheng, Effect of reaction sintering process on the microwave dielectric properties of Ba2Ti9O20 materials. J. Eur. Ceram. Soc 30(2), 159–163 (2010)

    Article  CAS  Google Scholar 

  9. H.T. Yu, T. Luo, L. He, J.S. Liu, Effect of ZnO on Mg2TiO4-MgTiO3-CaTiO3 microwave dielectric ceramics prepared by reaction sintering route. Adv. Appl. Ceram. 118(3), 98–105 (2019)

    Article  CAS  Google Scholar 

  10. S.C. Zhou, X.W. Luan, S. Hu, X.J. Zhou, S. He, X. Wang, H.F. Zhou, Sintering behavior, phase structure and microwave dielectric properties of CeO2 added CaTiO3-SmAlO3 ceramics prepared by reaction sintering method. Ceram. Int. 47(3), 3741–3746 (2021)

    Article  CAS  Google Scholar 

  11. C. Zhang, L. Yi, X.M. Chen, Improvement of microwave dielectric characteristics in SrNdAlO4 ceramics by Ca-substitution. Ceram. Int. 40(4), 6077–6082 (2014)

    Article  CAS  Google Scholar 

  12. J. Guo, D. Zhou, H. Wang, X. Yao, Microwave dielectric properties of (1–x)ZnMoO4-xTiO(2) composite ceramics. J. Alloys Compds. 509(19), 5863–5865 (2011)

    Article  CAS  Google Scholar 

  13. T. Luo, Q. Yang, H. Yu, J. Liu, Formation mechanism and microstructure evolution of Ba2Ti9O20 ceramics by reaction sintering method. J. Am. Ceram. Soc. 103(2), 1079–1087 (2020)

    Article  CAS  Google Scholar 

  14. H. Zhou, W. Sun, X. Liu, K. Wang, H. Ruan, X. Chen, Microwave dielectric properties of LiCa3ZnV3O12 and NaCa2Mg2V3O12 ceramics prepared by reaction-sintering. Ceram. Int. 45(2), 2629–2634 (2019)

    Article  CAS  Google Scholar 

  15. L. He, H. Yu, M. Zeng, E. Li, J. Liu, S. Zhang, Phase compositions and microwave dielectric properties of MgTiO3-based ceramics obtained by reaction-sintering method. J. Electroceram. 40(4), 360–364 (2018)

    Article  CAS  Google Scholar 

  16. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89(7), 2063–2072 (2006)

    CAS  Google Scholar 

  17. B. Jancar, D. Suvorov, M. Valant, Microwave dielectric properties and microstructural characteristics of aliovalently doped perovskite ceramics based on CaTiO3. Euro Ceram. Vii 206(2), 1289–1292 (2002)

    Google Scholar 

  18. B. Jancar, D. Suvorov, M. Valant, Microwave dielectric properties of CaTiO3-NdAlO3 ceramics. J. Mater. Sci. Lett. 20(1), 71–72 (2001)

    Article  CAS  Google Scholar 

  19. K.G. Wang, H.F. Zhou, X.B. Liu, W.D. Sun, X.L. Chen, H. Ruan, A lithium aluminium borate composite microwave dielectric ceramic with low permittivity, near-zero shrinkage, and low sintering temperature. J. Eur. Ceram. Soc. 39(4), 1122–1126 (2019)

    Article  Google Scholar 

  20. H.F. Zhou, X.H. Tan, J. Huang, N. Wang, G.C. Fan, X.L. Chen, Phase structure, sintering behavior and adjustable microwave dielectric properties of Mg1-xLi2xTixO1+2x solid solution ceramics. J. Alloys Compds. 696, 1255–1259 (2017)

    Article  CAS  Google Scholar 

  21. H.F. Zhou, X.B. Liu, X.L. Chen, L. Fang, Y.L. Wang, ZnLi2/3Ti4/3O4: a new low loss spinel microwave dielectric ceramic. J. Eur. Ceram. Soc. 32(2), 261–265 (2012)

    Article  CAS  Google Scholar 

  22. X.L. Chen, H.F. Zhou, L.A. Fang, X.B. Liu, Y.L. Wang, Microwave dielectric properties and its compatibility with silver electrode of Li2MgTi3O8 ceramics. J. Alloys Compds. 509(19), 5829–5832 (2011)

    Article  CAS  Google Scholar 

  23. Y.C. Liou, C.T. Wu, K.H. Tseng, T.C. Chung, Synthesis of BaTi4O9 ceramics by reaction-sintering process. Mater. Res. Bull. 40(9), 1483–1489 (2005)

    Article  CAS  Google Scholar 

  24. He S, Wang K, Zhou X, Hu S, Luan X, Zhou S, Zhou H (2021) Microwave dielectric properties of Ca115Sm085Al085Ti015O4 ceramics prepared by reaction sintering. Ceram Int, 47(11):15580–15584.

  25. J.M. Li, C.M. Zhang, H. Liu, T. Qiu, C.G. Fan, Structure, morphology, and microwave dielectric properties of SmAlO3 synthesized by stearic acid route. J. Adv. Ceram. 9(5), 558–566 (2020)

    Article  CAS  Google Scholar 

  26. Y. Orooji, E. Ghasali, M. Moradi, M.R. Derakhshandeh, M. Alizadeh, M.S. Asl, T. Ebadzadeh, Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering. Ceram. Int. 45(13), 16288–16296 (2019)

    Article  CAS  Google Scholar 

  27. Y.M. Lai, Y.M. Zeng, J. Han, X.F. Liang, X.L. Zhong, M.Z. Liu, H. Su, Structure dependence of microwave dielectric properties in Zn2-xSiO4-x-xCuO ceramics. J. Eur. Ceram. Soc. 41(4), 2602–2609 (2021)

    Article  CAS  Google Scholar 

  28. E.D. Zhao, J.Y. Hao, X. Xue, M.M. Si, J. Guo, H. Wang, Rutile TiO2 microwave dielectric ceramics prepared via cold sintering assisted two step sintering. J. Eur. Ceram. Soc. 41(6), 3459–3465 (2021)

    Article  CAS  Google Scholar 

  29. D. Zhou, H.H. Guo, M.S. Fu et al., Anomalous dielectric behaviour during the monoclinic to tetragonal phase transition in La(Nb0.9V0.1)O4. Inorg. Chem. Front. 8, 156–163 (2021)

    Article  CAS  Google Scholar 

  30. Wu FF, Zhou D, Du C, et al (2021) Temperature stable Sm (Nb1−xVx)O4 (00 ≤ x ≤ 09) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications. J. Mater. Chem. C, 9: 9962–9971.

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos. 61761015 and 11664008), Natural Science Foundation of Guangxi (Nos. 2017GXNSFFA198011, 2018GXNSFFA050001 and 2017GXNSFDA198027) and High Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanfu Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, K., Zhou, S. et al. Reaction sintering and mechanism of microwave dielectric ceramic with K2NiF4 structure and perovskite structure. J Mater Sci: Mater Electron 33, 2213–2221 (2022). https://doi.org/10.1007/s10854-021-07429-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07429-6

Navigation