Skip to main content
Log in

Titanium dichalcogenide-decorated reduced graphene oxide nanocomposite for high-performance photovoltaic cell fabrication

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study describes the flexible DSSC devices based on efficient TiS2/Reduced Graphene Oxide (TiS2/RGO) hybrid photoanodes that have been successfully fabricated. Synthesized TiS2/RGO composite was well characterized with structural, optical, morphological, elemental, and textural analysis. X-ray diffraction patterns confirmed the crystallinity with the high purity nature of TiS2 and TiS2/RGO composites. Scanning and transmission microscopy (SEM and TEM) micrographs illustrate that spherical nanoparticles of TiS2 were consistently decorated over nano-thick RGO sheets. Particle surface area and mesopores of the synthesized TiS2/RGO nanocomposite hybrid photoanodes were measured using N2 adsorption–desorption analysis. The Synthesized pure and TiS2 and TiS2/RGO nanocomposite were coated as an electrode and were used to assemble a dye-sensitized solar cell device. The photovoltaic performance data of TiS2/RGO composite electrode shows high fill factor value, and power conversion efficiency than TiS2 nanoparticles. The results indicate that TiS2/RGO (TSG2) photoanode has a high PCE value of 8.6%, this may be due to due to the higher current density (19.8 mA/cm2). Tri-iodide reduction and conductivity of RGO is high so that the PCE of TiS2/RGO composite electrode is significantly enhanced. EIS results demonstrate that TSG2 photoanode shows smaller Rs (6.4 Ω) and high electron life time 78 ns. The improved mechanism of RGO in to TiS2 was also described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ. Sci. 6, 1443–1464 (2013)

    Article  Google Scholar 

  2. H. Jeong, Y. Pak, Y. Hwang, H. Song, K.H. Lee, H.C. Ko, G.Y. Jung, Enhancing the charge transfer of the counter electrode in dye-sensitized solar cells using periodically aligned platinum nanocups. Small 8, 3757–3761 (2012)

    Article  CAS  Google Scholar 

  3. F. Huang, Q. Li, G.J. Thorogood, Y.B. Cheng, R.A. Caruso, Zn-doped TiO2 electrodes in dye-sensitized solar cells for enhanced photocurrent. J. Mater. Chem. 22, 17128 (2012)

    Article  CAS  Google Scholar 

  4. S.E. Koops, B.C. O’Regan, P.R.F. Barnes, J.D. Durran, Parameters influencing the efficiency of electron injectionin dye sensitized solar cell. J. Am. Chem. Soc. 131, 4808–4818 (2009)

    Article  CAS  Google Scholar 

  5. Q. Wang, S. Ito, M. Gratzel, F.F. Santiago, I. Mora-Sera, J. Bisquert, T. Bessho, H. Imai, Characteristics of high efficiency dye sensitized solar cells. J. Phys. Chem. B. 110, 25210–25221 (2006)

    Article  CAS  Google Scholar 

  6. S.M. Feldt, G. Wang, G. Boschloo, A. Hagfeldt, Effects of driving forces for recombination and regeneration on the photovoltaic performance of dye-sensitized solar cells using cobalt polypyridine redox couples. J. Phys. Chem. C. 115, 21500–21507 (2011)

    Article  CAS  Google Scholar 

  7. H. Wang, M. Liu, C. Yan, J. Bell, Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed. Beilstein J. Nanotechnol. 3, 378–387 (2012)

    Article  Google Scholar 

  8. F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energ. Mat. Sol. Cells. 87, 117–131 (2005)

    Article  CAS  Google Scholar 

  9. X. Lü, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, S. Huang, Improved-performance dye-sensitized solar cells using Nb-doped TiO2 electrodes: efficient electron injection and transfer. Adv. Funct. Mater. 20, 509–515 (2010)

    Article  Google Scholar 

  10. J. Liu, H. Yang, W. Tan, X. Zhou, Y. Lin, Photovoltaic performance improvement of dye sensitized solar cells based on tantalum-doped TiO2 thin films. Electrochim. Acta. 56, 396–400 (2010)

    Article  CAS  Google Scholar 

  11. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)

    Article  CAS  Google Scholar 

  12. B. Tian, X. Zheng, T.J. Kempa, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007)

    Article  CAS  Google Scholar 

  13. Y. Duan, N. Fu, Q. Liu, Y. Fang, X. Zhoy, J. Zhang, Y. Lin, Sn-doped TiO2 photoanode for dye-sensitized solar cells. J. Phys. Chem. C. 116, 8888–8893 (2012)

    Article  CAS  Google Scholar 

  14. W. Sun, T. Peng, Y. Liu, Hierarchically porous hybrids of polyaniline nanoparticles anchored on reduced graphene oxide sheets as counter electrodes for dye sensitized solar cells. J. Mater. Chem. A. 1, 2762–2768 (2013)

    Article  CAS  Google Scholar 

  15. Y. Zhao, A. Thapa, Q. Feng, Electrospun TiC/C nano-felt surface-decorated with Pt nanoparticles as highly efficient and cost-effective counter electrode for dye-sensitized solar cells. Nanoscale 5, 11742–11747 (2013)

    Article  CAS  Google Scholar 

  16. A. Liu, P. Ling, G. Yu, H. Jin, S. Wang, J. Wang, Urchin-shaped MoS2–Cd0.8Zn0.2S nanocomposites with greatly enhanced and long-lasting photocatalytic activity. Int. J. Hydrogen Energy 42, 18824–18831 (2017)

    Article  CAS  Google Scholar 

  17. W. Wang, H. Yuan, J. Xie, Xu. Di, X. Chen, Y. He, T. Zhang, Z. Chen, Y. Zhang, H. Shen, Enhanced efficiency of large-area dye-sensitized solar cells by light-scattering effect using multilayer TiO2 photoanodes. Mater. Res. Bull. 100, 434–439 (2018)

    Article  CAS  Google Scholar 

  18. X. He, F. Deng, T. Shen, L. Yang, D. Chen, J. Luo, X. Luo, X. Min, F. Wang, Exceptional adsorption of arsenic by zirconium metal- organic frameworks: Engineering exploration and mechanism insight. J. Colloid Interface Sci. 539, 223–234 (2019)

    Article  CAS  Google Scholar 

  19. H. Jaafarac, Z.A. Ahmad, M.F. Ain, Effect of Nb-doped TiO2 photoanode using solid state method with E. conferta as sensitizer on the performance of dye sensitized solar cell. Optik 144, 91–101 (2017)

    Article  Google Scholar 

  20. M. Parvaz, S. Ahmed, M.B. Khan, D. Rahul, S. Ahmad, Z.H. Khan, Synthesis of TiS2 nanodiscs for supercapacitor application. AIP Conf. Proc. 1953, 030121 (2018)

    Article  Google Scholar 

  21. H. Jing, Q. Cheng, J. Mark Weller, X.S. Chu, Q.H. Wang, C.K. Chan, Synthesis of TiO2 nanosheet photocatalysts from exfoliation of TiS2 and hydrothermal treatment. J. Mater. Res. 33, 3540–3548 (2018)

    Article  CAS  Google Scholar 

  22. P. Pal, S. Bhattacharjee, M.P. Das, Y.-B. Shim, B. Neppolian, B.J. Cho, P. Veluswamy, Design of electrochemically reduced graphene oxide/titanium disulfide nanocomposite sensor for selective determination of ascorbic acid. ACS Appl. Nano Mater. 4, 10077–10089 (2021)

    Article  CAS  Google Scholar 

  23. K. Wilczyński, A. Łapińska, A. Wróblewska, J. Judek, M. Zdrojek, Raman spectroscopy of TiO2 thin films. J. Alloy. Comp. 749, 810–822 (2018)

    Google Scholar 

  24. M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, Enhanced visible light photocatalytic activity of tin oxide nanoparticles synthesized by different microwave optimum conditions. J. Mater. Sci. Mater. Electron. 29, 2341–2350 (2018)

    Article  CAS  Google Scholar 

  25. M. Parthibavarman, S. Sathishkumar, M. Jayashree, R. BoopathiRaja, Microwave assisted synthesis of pure and Ag doped SnO2 quantum dots as novel platform for high photocatalytic activity performance. J. Clus. Sci. 30, 351–363 (2019)

    Article  CAS  Google Scholar 

  26. M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, R. BoopathiRaja, High visible light-driven photocatalytic activity of large surface area Cu doped SnO2 nanorods synthesized by novel one-step microwave irradiation method. J. Iran. Chem. Soc. 15, 2789–2801 (2018)

    Article  CAS  Google Scholar 

  27. Y. Zhang, C. Pan, TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J. Mater. Sci. 46, 2622–2626 (2011)

    Article  CAS  Google Scholar 

  28. J. Feng, Xu. Sun, Wu. Changzheng, L. Peng, C. Lin, Hu. Shuanglin, J. Yang, Yi. Xie, Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 133(44), 17832–17838 (2011)

    Article  CAS  Google Scholar 

  29. M. Parvaz, N.A. Salah, Z.H. Khan, Effect of ZnO nanoparticles doping on the optical properties of TiS2 discs. Optik 66, 717–727 (2018)

    Google Scholar 

  30. C. Wei, Xi. Chen, D. Li, Su. Huimin, H. He, J.-F. Dai, Bound exciton and free exciton states in GaSe thin slab. Sci. Rep. 6, 33890 (2016)

    Article  CAS  Google Scholar 

  31. R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of MnCo2O4 nanoflakes@ nanowires grown on Ni foam: design, fabrication and applications in electrochemical energy storage. J. Alloy. Compd. 811, 152084 (2019)

    Article  CAS  Google Scholar 

  32. R. BoopathiRaja, M. Parthibavarman, A. Nishara Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum 165, 96–104 (2019)

    Article  CAS  Google Scholar 

  33. L.J. Zhu, Q.P. Lu, L.F. Lv, Y. Wang, Y.F. Hu, Z.B. Deng, Z.D. Lou, Y.B. Hou, F. Teng, Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Adv. 7, 20084–20092 (2017)

    Article  CAS  Google Scholar 

  34. Y.M. Xie, P.M.A. Sherwood, X-ray photoelectron spectroscopic studies of carbonfiber surfaces. Chem. Mater. 2, 293–299 (1990)

    Article  CAS  Google Scholar 

  35. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47, 145–152 (2009)

    Article  CAS  Google Scholar 

  36. P. Stathi, D. Gournis, Y. Deligiannakis, P. Rudolf, Stabilization of phenolic radicals on graphene oxide: an XPS and EPR study. Langmuir 31, 10508–11051 (2015)

    Article  CAS  Google Scholar 

  37. D. Krishnamoorthy, A. Prakasam, Low-cost and novel preparation of porous NiS2/graphene heterojunctions photoanodes for high-efficiency dye-sensitized solar cells. Inorg. Chem. Commun. 119, 108063 (2020)

    Article  CAS  Google Scholar 

  38. Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, Q. Meng, Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 9, 596–598 (2007)

    Article  CAS  Google Scholar 

  39. J. Dong, J. Wu, J. Jia, S. Wu, P. Zhou, Y. Tu, Z. Lan, Cobalt selenide nanorods used as a high efficient counter electrode for dye-sensitized solar cells. Electrochim. Acta 168, 69–75 (2015)

    Article  CAS  Google Scholar 

  40. Y. Wang, W. Chen, W. Lu, P. Xu, D. Chen, X. Yin, M. He, Sulfur-doped reduced graphene oxide/MoS2 composite with exposed active sites as efficient Pt-free counter electrode for dye-sensitized solar cell. Appl. Surf. Sci. 452, 232–238 (2018)

    Article  CAS  Google Scholar 

  41. X. Yuan, X. Li, X. Zhang, Y. Li, L. Lu, MoS2 vertically grown on graphene with efficient electrocatalytic activity in Pt-free dye-sensitized solar cells. J. Alloy. Compd. 731, 685–692 (2018)

    Article  CAS  Google Scholar 

  42. X. Liu, X. Li, M. An, Y. Gao, Z. Cao, J. Liu, W–N/C@Co9S8@WS2-hollow carbon nanocage as multifunctional electrocatalysts for DSSCS, ORR and OER. Electrochim. Acta 351, 136249 (2020)

    Article  CAS  Google Scholar 

  43. M. Licklederer, G. Cha, R. Hahn, P. Schmuki, Ordered nanotubular titanium disulfide (TiS2) structures: synthesis and use as counter electrodes in dye sensitized solar cells (DSSCs). J. Electrochem. Soc. 166, H3009–H3013 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Prakasam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamoorthy, D., Nagoor Meeran, M., Prakasam, A. et al. Titanium dichalcogenide-decorated reduced graphene oxide nanocomposite for high-performance photovoltaic cell fabrication. J Mater Sci: Mater Electron 33, 1280–1292 (2022). https://doi.org/10.1007/s10854-021-07427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07427-8

Navigation