Skip to main content
Log in

Co-detection of vanillin and folic acid using a novel electrochemical sensor of NiFe2O4/rGO/ILCPE

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The given study aimed to modify carbon paste electrode by NiFe2O4/rGO nanocomposite and ionic liquid as an efficient electrochemical sensor for the co-detection of vanillin and folic acid. The NiFe2O4/rGO nanocomposite was prepared by simple technique. The characterization of NiFe2O4/rGO nanocomposite was performed using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy, and Raman analysis. The electrochemical functions of NiFe2O4/rGO/ILCPE were analyzed by cyclic voltammetry, differential pulse voltammetry, chronoamperometry, as well as linear sweep voltammetry. The results exhibited an admirable sensitivity for the modified NiFe2O4/rGO/ILCPE toward vanillin. Moreover, an excellent resolving capacity was displayed for the modified sensor to overlap the voltammetric behavior of vanillin and folic acid into two distinct resolved peaks. Additionally, the co-detection of folic acid and vanillin was successful on the modified CPE with no interference. The limit of detection as 6.0 nM with the linear dynamic range of 0.02–285.0 µM for the vanillin determination. The applicability of developed sensor was also successfully confirmed by analyzing vanillin and folic acid present in food specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Khoshroo, L. Hosseinzadeh, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, Silver nanofibers/ionic liquid nanocomposite based electrochemical sensor for detection of clonazepam via electrochemically amplified detection. Microchem. J. 145, 1185–1190 (2019)

    CAS  Google Scholar 

  2. S. Azimi, M. Amiri, H. Imanzadeh, A. Bezaatpour, Fe3O4@ SiO2-NH2/CoSB modified carbon paste electrode for simultaneous detection of acetaminophen and chlorpheniramine. Adv. J. Chem. A 4, 152–164 (2021)

    CAS  Google Scholar 

  3. H. Yang, J. Wang, C. Yang, X. Zhao, S. Xie, Z. Ge, Nano Pt@ ZIF8 modified electrode and its application to detect sarcosine. J. Electrochem. Soc. 165, H247 (2018)

    CAS  Google Scholar 

  4. A. Hosseini Fakhrabad, R. Sanavi Khoshnood, M.R. Abedi, M. Ebrahimi, Fabrication a composite carbon paste electrodes (CPEs) modified with Multi-Wall Carbon Nano-Tubes (MWCNTs/N, N-Bis (salicyliden)-1,3-propandiamine) for determination of lanthanum (III). Eurasian Chem. Commun. 3, 627–634 (2021)

    Google Scholar 

  5. M.R. Ganjali, F. Garkani-Nejad, S. Tajik, H. Beitollahi, E. Pourbasheer, B. Larijanii, Determination of salicylic acid by differential pulse voltammetry using ZnO/Al2O3 nanocomposite modified graphite screen printed electrode. Int. J. Electrochem. Sci. 12, 9972–9982 (2017)

    CAS  Google Scholar 

  6. M. Govindasamy, S.F. Wang, R. Jothiramalingam, S.N. Ibrahim, H.A. Al-Lohedan, A screen-printed electrode modified with tungsten disulfide nanosheets for nanomolar detection of the arsenic drug roxarsone. Microchim. Acta 186, 420 (2019)

    Google Scholar 

  7. P. Prasad, N.Y. Sreedhar, Effective SWCNTs/Nafion electrochemical sensor for detection of dicapthon pesticide in water and agricultural food samples. Chem. Methodol. 2, 277–290 (2018)

    CAS  Google Scholar 

  8. P.H. Lo, S.A. Kumar, S.M. Chen, Amperometric determination of H2O2 at nano-TiO2/DNA/thionin nanocomposite modified electrode. Colloids Surf B: Biointerfaces 66, 266–273 (2008)

    CAS  Google Scholar 

  9. F. Mehri-Talarposhti, A. Ghorbani-Hasan Saraei, L. Golestan, S.A. Shahidi, Electrochemical determination of Vitamin B6 in fruit juices using a new nanostructure voltammetric sensor. Asian J. Nanosci. Mater. 3, 313–320 (2020)

    CAS  Google Scholar 

  10. S. Tajik, H. Beitollahi, F. Garkani-Nejad, M. Safaei, P. Mohammadzadeh Jahani, Electrochemical sensing of Sudan I using the modified graphite screen-printed electrode. Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1738418

    Article  Google Scholar 

  11. M. Pirozmand, A. Nezhadali, M. Payehghadr, L. Saghatforoush, Ultratrace determination of cadmium ion in petrochemical sample by a new modified carbon paste electrode as voltammetric sensor. Eurasian Chem. Commun. 2, 1021–1032 (2020)

    CAS  Google Scholar 

  12. H. Wang, Y. Zhou, Y. Guo, W. Liu, C. Dong, Y. Wu, S. Shuang, β-Cyclodextrin/Fe3O4 hybrid magnetic nano-composite modified glassy carbon electrode for tryptophan sensing. Sens. Actuators B: Chem. 163, 171–178 (2012)

    CAS  Google Scholar 

  13. V. Baiao, L.I. Tomé, C.M. Brett, Iron oxide nanoparticle and multiwalled carbon nanotube modified glassy carbon electrodes application to levodopa detection. Electroanalysis 30, 1342–1348 (2018)

    CAS  Google Scholar 

  14. N.M. Nor, K.A. Razak, Z. Lockman, Physical and electrochemical properties of iron oxide nanoparticles-modified electrode for amperometric glucose detection. Electrochim. Acta 248, 160–168 (2017)

    Google Scholar 

  15. M.E. Uddin, N.H. Kim, T. Kuila, S.H. Lee, D. Hui, J.H. Lee, Preparation of reduced graphene oxide-NiFe2O4 nanocomposites for the electrocatalytic oxidation of hydrazine. Comp. Part B: Eng. 79, 649–659 (2015)

    CAS  Google Scholar 

  16. A. Kumar, A.K. Singh, M. Tomar, V. Gupta, P. Kumar, K. Singh, Electromagnetic interference shielding performance of lightweight NiFe2O4/rGO nanocomposite in X-band frequency range. Ceramics Int. 46, 15473–15481 (2020)

    CAS  Google Scholar 

  17. Y. Poo-arporn, S. Pakapongpan, N. Chanlek, R.P. Poo-arporn, The development of disposable electrochemical sensor based on Fe3O4-doped reduced graphene oxide modified magnetic screen-printed electrode for ractopamine determination in pork sample. Sens. Actuators B: Chem. 284, 164–171 (2019)

    CAS  Google Scholar 

  18. H. Wang, S. Zhang, S. Li, J. Qu, Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol. Talanta 178, 188–194 (2018)

    CAS  Google Scholar 

  19. M. Rahimnejad, R. Zokhtareh, A.A. Moghadamnia, M. Asghary, An electrochemical sensor based on reduced graphene oxide modified carbon paste electrode for Curcumin determination in human blood serum. Portugal. Electrochim. Acta 38, 29–42 (2020)

    CAS  Google Scholar 

  20. A.A. Ensafi, F. Rezaloo, B. Rezaei, CoFe2O4/reduced graphene oxide/ionic liquid modified glassy carbon electrode, a selective and sensitive electrochemical sensor for determination of methotrexate. J. Taiwan Inst. Chem. Eng. 78, 45–50 (2017)

    CAS  Google Scholar 

  21. C. Ridings, V. Lockett, G. Andersson, Comparing the charge distribution along the surface normal in the [C6mim]+ ionic liquid with different anions. Colloid. Surf. A Physicochem. Eng. Aspects 413, 149–153 (2012)

    CAS  Google Scholar 

  22. K. Kalcher, Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis 2, 419–433 (1990)

    CAS  Google Scholar 

  23. H. Karimi-Maleh, O.A. Arotiba, Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci. 560, 208–212 (2020)

    CAS  Google Scholar 

  24. M.R. Ganjali, N. Motakef-Kazami, F. Faridbod, S. Khoee, P. Norouzi, Determination of Pb2+ ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica. J. Hazard. Mater. 173, 415–419 (2010)

    CAS  Google Scholar 

  25. R. Abdi, A. Ghorbani-HasanSaraei, S. Naghizadeh Raeisi, F. Karimi, A gallic acid food electrochemical sensor based on amplification of paste electrode by Cdo/CNTs nanocomposite and ionic liquid. J Med Chem Sci 3(4), 338–344 (2020)

    CAS  Google Scholar 

  26. L. Shang, F. Zhao, B. Zeng, Sensitive voltammetric determination of vanillin with an AuPd nanoparticles−graphene composite modified electrode. Food Chem. 151, 53–57 (2014)

    CAS  Google Scholar 

  27. H.S. Ali, A.A. Abdullah, P.T. Pınar, Y. Yardım, Z. Şentürk, Simultaneous voltammetric determination of vanillin and caffeine in food products using an anodically pretreated boron-doped diamond electrode: its comparison with HPLC-DAD. Talanta 170, 384–391 (2017)

    CAS  Google Scholar 

  28. D. Zhang, X. Ouyang, W. Ma, L. Li, Y. Zhang, Voltammetric determination of folic acid using adsorption of methylene blue onto electrodeposited of reduced graphene oxide film modified glassy carbon electrode. Electroanalysis 28, 312–319 (2016)

    CAS  Google Scholar 

  29. V. Mani, R. Umamaheswari, S.M. Chen, M. Govindasamy, C. Su, A. Sathiyan, M. Keerthi, Highly sensitive determination of folic acid using graphene oxide nanoribbon film modified screen printed carbon electrode. Int. J. Electrochem. Sci. 12, 475–484 (2017)

    CAS  Google Scholar 

  30. S. Akbar, A. Anwar, Q. Kanwal, Electrochemical determination of folic acid: a short review. Anal. Biochem. 510, 98–105 (2016)

    CAS  Google Scholar 

  31. S.B. Tanuja, B.K. Swamy, K.V. Pai, Electrochemical determination of paracetamol in presence of folic acid at nevirapine modified carbon paste electrode: a cyclic voltammetric study. J. Electroanal. Chem. 798, 17–23 (2017)

    CAS  Google Scholar 

  32. J. F. Ou, X. Y. Gu, Z. D. Bao, Q. J. Chen, D. M. Wang, Determination of vanillin and ethyl vanillin in baby formula by gas chromatography. Jiangxi Sci. 1, (2011)

  33. E.S. Osseyi, R.L. Wehling, J.A. Albrecht, Liquid chromatographic method for determining added folic acid in fortified cereal products. J. Chromatogr. A 826, 235–240 (1998)

    CAS  Google Scholar 

  34. G. Lamprecht, F. Pichlmayer, E.R. Schmid, Determination of the authenticity of vanilla extracts by stable isotope ratio analysis and component analysis by HPLC. J. Agric. Food Chem. 42, 1722–1727 (1994)

    CAS  Google Scholar 

  35. M.J. Akhtar, M.A. Khan, I. Ahmad, High performance liquid chromatographic determination of folic acid and its photodegradation products in the presence of riboflavin. J. Pharma. Biomed. Anal. 16, 95–99 (1997)

    CAS  Google Scholar 

  36. M. Ohashi, H. Omae, M. Hashida, Y. Sowa, S. Imai, Determination of vanillin and related flavor compounds in cocoa drink by capillary electrophoresis. J. Chromatogr. A 1138, 262–267 (2007)

    CAS  Google Scholar 

  37. J.R. Flores, G.C. Peñalvo, A.E. Mansilla, M.R. Gómez, Capillary electrophoretic determination of methotrexate, leucovorin and folic acid in human urine. J. Chromatogr B 819, 141–147 (2005)

    Google Scholar 

  38. G. Ziyatdinova, E. Kozlova, E. Ziganshina, H. Budnikov, Surfactant/carbon nanofibers-modified electrode for the determination of vanillin. Monatshefte für Chemie-Chem. Monthly 147, 191–200 (2016)

    CAS  Google Scholar 

  39. V.K. Gupta, H. Karimi-Maleh, S. Agarwal, F. Karimi, M. Bijad, M. Farsi, S.A. Shahidi, Fabrication of a food nano-platform sensor for determination of vanillin in food samples. Sensors 18, 2817 (2018)

    Google Scholar 

  40. Y. Tian, P. Deng, Y. Wu, J. Liu, J. Li, G. Li, Q. He, High sensitive voltammetric sensor for nanomolarity vanillin detection in food samples via manganese dioxide nanowires hybridized electrode. Microchem. J. 104885 (2020)

  41. P. Deng, Z. Xu, R. Zeng, C. Ding, Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene–polyvinylpyrrolidone composite film. Food Chem. 180, 156–163 (2015)

    CAS  Google Scholar 

  42. F. Chekin, F. Teodorescu, Y. Coffinier, G.H. Pan, A. Barras, R. Boukherroub, S. Szunerits, MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum. Biosens. Bioelectron. 85, 807–813 (2016)

    CAS  Google Scholar 

  43. E. Senthilkumar, A.M. Shanmugharaj, R.S. Babu, G.S. Sundari, K.T. Kumar, S. Raghu, R. Kalaivani, Development of constructed nanoporous graphene-modified electrode for electrical detection of folic acid. J. Mater. Sci. Mater. Electron. 30, 13488–13496 (2019)

    CAS  Google Scholar 

  44. N. Lavanya, E. Fazio, F. Neri, A. Bonavita, S.G. Leonardi, G. Neri, C. Sekar, Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO2 nanoparticles modified glassy carbon electrode. J. Electroanal. Chem. 770, 23–32 (2016)

    CAS  Google Scholar 

  45. M. Arvand, A. Pourhabib, M. Giahi, Square wave voltammetric quantification of folic acid, uric acid and ascorbic acid in biological matrix. J. Pharma. Anal. 7, 110–117 (2017)

    Google Scholar 

  46. M.A. Al-Omair, A.H. Touny, F.A. Al-Odail, M.M. Saleh, Electrocatalytic oxidation of glucose at nickel phosphate nano/micro particles modified electrode. Electrocatalysis 8, 340–350 (2017)

    CAS  Google Scholar 

  47. S. Tajik, H. Beitollahi, H. Won Jang, M. Shokouhimehr, A screen printed electrode modified with Fe3O4@polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine. Talanta 232, 122379 (2021)

  48. M.Z.H. Khan, X. Liu, Y. Tang, X. Liu, Ultra-sensitive electrochemical detection of oxidative stress biomarker 8-hydroxy-2′-deoxyguanosine with poly (L-arginine)/graphene wrapped Au nanoparticles modified electrode. Biosens. Bioelectron. 117, 508–514 (2018)

    CAS  Google Scholar 

  49. F. Garkani-Nejad, H. Beitollahi, S. Tajik, Sh. Jahani, La3+-doped Co3O4 nanoflowers modified graphite screen printed electrode for electrochemical sensing of vitamin B6. Anal. Bioanal. Chem. Res. 6, 69–79 (2019)

    Google Scholar 

  50. P.S. Dorraji, F. Jalali, Electrochemical fabrication of a novel ZnO/cysteic acid nanocomposite modified electrode and its application to simultaneous determination of sunset yellow and tartrazine. Food Chem. 227, 73–77 (2017)

    CAS  Google Scholar 

  51. J. Peng, C. Hou, X. Hu, A graphene-based electrochemical sensor for sensitive detection of vanillin. Int. J. Electrochem. Sci. 7, 1724–1733 (2012)

    CAS  Google Scholar 

  52. M.A. Khalilzadeh, Z. Arab, High sensitive nanostructure square wave voltammetric sensor for determination of vanillin in food samples. Curr. Anal. Chem. 13, 81–86 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peyman Mohammadzadeh Jahani or Hadi Beitollahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajik, S., Lohrasbi-Nejad, A., Mohammadzadeh Jahani, P. et al. Co-detection of vanillin and folic acid using a novel electrochemical sensor of NiFe2O4/rGO/ILCPE. J Mater Sci: Mater Electron 33, 2020–2030 (2022). https://doi.org/10.1007/s10854-021-07405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07405-0

Navigation