Skip to main content
Log in

A 3D honeycomb graphene structure for wearable piezoresistive pressure sensor with high sensitivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The advancement in the applications of wearable and smart devices stimulated the investigation for flexible electronic sensor. However, the efficient operation of these sensors at low temperature is a big challenge due to the inactivation of material microstructure. To address this point, we prepared a piezoresistive pressure sensor based on a three-dimensional porous reduced graphene oxide film with microvoids, which endowed the film’s excellent mechanical property, and thus the sensor still kept enough sensitivity at 77 K. At room temperature, the sensitivity of the pressure sensor was 0.009 kPa−1 (0–10 kPa), and the response time and recovery time were 13 ms and 25 ms, respectively. In liquid nitrogen, the sensitivity of the pressure sensor was 0.05 kPa−1 (0–5 kPa), and the response time and recovery time are 16 ms and 22 ms, respectively. The sensor showed excellent performances in real-time monitor of breathing, finger bending, frowning, and other human physiological signals. In addition, the sensor is assembled into a 3-pixel array to provide a 3D pressure mapping for various forces under different temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Meng, P. Pan, Z. Yang, J. Wei, Q. Wang, M. Gong, G. Zhang, J. Mater. Sci. 55(23), 10084 (2020). https://doi.org/10.1007/s10853-020-04707-2

    Article  CAS  Google Scholar 

  2. M. Park, Y.J. Park, X. Chen, Y.K. Park, M.S. Kim, J.H. Ahn, Adv. Mater. 28(13), 2556 (2016). https://doi.org/10.1002/adma.201505124

    Article  CAS  Google Scholar 

  3. X. Pang, Q. Zhang, Y. Shao, M. Liu, D. Zhang, Y. Zhao, Sensors (Basel). (2021). https://doi.org/10.3390/s21041130

    Article  Google Scholar 

  4. B.W. An, S. Heo, S. Ji, F. Bien, J.U. Park, Nat. Commun. 9(1), 2458 (2018). https://doi.org/10.1038/s41467-018-04906-1

    Article  CAS  Google Scholar 

  5. G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si, W. Huang, X. Dong, Adv. Funct. Mater (2018). https://doi.org/10.1002/adfm.201802576

    Article  Google Scholar 

  6. Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, J.B. Xu, ACS Nano 11(5), 4507 (2017). https://doi.org/10.1021/acsnano.6b08027

    Article  CAS  Google Scholar 

  7. Y. Yang, H. Pan, G. Xie, Y. Jiang, C. Chen, Y. Su, Y. Wang, H. Tai, Sens. Actuators A: Phys. (2020). https://doi.org/10.1016/j.sna.2019.111789

    Article  Google Scholar 

  8. B. Ji, Q. Zhou, B. Hu, J. Zhong, J. Zhou, B. Zhou, Adv. Mater. (2021). https://doi.org/10.1002/adma.202100859

    Article  Google Scholar 

  9. S. Li, R. Li, T. Chen, X. Xiao, IEEE Sens. J. 20(23), 14436 (2020). https://doi.org/10.1109/jsen.2020.3008474

    Article  CAS  Google Scholar 

  10. N.A. Choudhry, A. Rasheed, S. Ahmad, L. Arnold, L. Wang, IEEE Sens. J. 20(18), 10485 (2020). https://doi.org/10.1109/jsen.2020.2994264

    Article  CAS  Google Scholar 

  11. S. Li, R. Li, O.G. González, T. Chen, X. Xiao, Compos. Sci. Technol. (2021). https://doi.org/10.1016/j.compscitech.2020.108617

    Article  Google Scholar 

  12. H. Liu, G. Zhao, M. Wu, Z. Liu, D. Xiang, C. Wu, Y. Cheng, H. Wang, Z.L. Wang, L. Li, Nano Energy (2019). https://doi.org/10.1016/j.nanoen.2019.104161

    Article  Google Scholar 

  13. Z. Song, W. Li, Y. Bao, H. Kong, S. Gan, W. Wang, Z. Liu, Y. Ma, D. Han, L. Niu, ACS Appl. Nano Mater. 3(2), 1731 (2020). https://doi.org/10.1021/acsanm.9b02435

    Article  CAS  Google Scholar 

  14. H. Kong, Z. Song, J. Xu, D. Qu, Y. Bao, W. Wang, Z. Wang, Y. Zhang, Y. Ma, D. Han, L. Niu, Adv. Mater. Technol. (2020). https://doi.org/10.1002/admt.202000677

    Article  Google Scholar 

  15. S. Lee, S. Franklin, F.A. Hassani, T. Yokota, O.G. Nayeem, Y. Wang, R. Leib, G. Cheng, D.W. Franklin, T. Someya, Science 370(6519), 966 (2020). https://doi.org/10.1126/science.abc9735

    Article  CAS  Google Scholar 

  16. X. Pang, Q. Zhang, Y.W. Shao, M.J. Liu, D.L. Zhang, Y.L. Zhao, Sensors 21(4), 16 (2021). https://doi.org/10.3390/s21041130

    Article  CAS  Google Scholar 

  17. G. Ge, Y.Z. Zhang, J.J. Shao, W.J. Wang, W.L. Si, W. Huang, X.C. Dong, Adv. Funct. Mater. 28(32), 8 (2018). https://doi.org/10.1002/adfm.201802576

    Article  CAS  Google Scholar 

  18. F. Guo, Y.Q. Jiang, Z. Xu, Y.H. Xiao, B. Fang, Y.J. Liu, W.W. Gao, P. Zhao, H.T. Wang, C. Gao, Nat. Commun. 9, 9 (2018). https://doi.org/10.1038/s41467-018-03268-y

    Article  CAS  Google Scholar 

  19. C. Li, X.B. Deng, X.H. Zhou, Polymers 12(11), 15 (2020). https://doi.org/10.3390/polym12112670

    Article  CAS  Google Scholar 

  20. D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim, J.H. Cho, Adv. Mater. 28(13), 2601 (2016). https://doi.org/10.1002/adma.201505739

    Article  CAS  Google Scholar 

  21. H. Cho, H. Lee, S. Lee, S. Kim, Ceram. Int. 47(12), 17702 (2021). https://doi.org/10.1016/j.ceramint.2021.03.090

    Article  CAS  Google Scholar 

  22. Y. Pang, H. Tian, L.Q. Tao, Y.X. Li, X.F. Wang, N.Q. Deng, Y. Yang, T.L. Ren, ACS Appl. Mater. Interfaces 8(40), 26458 (2016). https://doi.org/10.1021/acsami.6b08172

    Article  CAS  Google Scholar 

  23. L.Q. Tao, K.N. Zhang, H. Tian, Y. Liu, D.Y. Wang, Y.Q. Chen, Y. Yang, T.L. Ren, ACS Nano 11(9), 8790 (2017). https://doi.org/10.1021/acsnano.7b02826

    Article  CAS  Google Scholar 

  24. L.W. Zhao, B. Jiang, Y.D. Huang, J. Mater. Sci. 54(7), 5472 (2019). https://doi.org/10.1007/s10853-018-03233-6

    Article  CAS  Google Scholar 

  25. T. Wang, J.H. Li, Y. Zhang, F. Liu, B. Zhang, Y. Wang, R. Jiang, G.P. Zhang, R. Sun, C.P. Wong, Chem. Eur. J. 25(25), 6378 (2019). https://doi.org/10.1002/chem.201900014

    Article  CAS  Google Scholar 

  26. Y.J. Lu, M.W. Tian, X.T. Sun, N. Pan, F.X. Chen, S.F. Zhu, X.S. Zhang, S.J. Chen, Compos. Part A Appl. Sci. Manuf. 117, 202 (2019). https://doi.org/10.1016/j.compositesa.2018.11.023

    Article  CAS  Google Scholar 

  27. Q.C. Li, Y.M. Liu, D. Chen, J.M. Miao, S.J. Lin, D.X. Cui, IEEE Electron Device Lett. 42(4), 589 (2021). https://doi.org/10.1109/led.2021.3063166

    Article  CAS  Google Scholar 

  28. M.H. Cao, J. Su, S.Q. Fan, H.W. Qiu, D.L. Su, L. Li, Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.126777

    Article  Google Scholar 

  29. L.F. Duan, L.J. Zhao, H. Cong, X.Y. Zhang, W. Lu, C.L. Xue, Small 15(7), 8 (2019). https://doi.org/10.1002/smll.201804347

    Article  CAS  Google Scholar 

  30. X.Y. Zhang, S.H. Sun, X.J. Sun, Y.R. Zhao, L. Chen, Y. Yang, W. Lu, D.B. Li, Light-Sci. Appl. 5, 7 (2016). https://doi.org/10.1038/lsa.2016.130

    Article  CAS  Google Scholar 

  31. R. Huang, M. Huang, X. Li, F. An, N. Koratkar, Z.Z. Yu, Adv. Mater. 30(21), e1707025 (2018). https://doi.org/10.1002/adma.201707025

    Article  CAS  Google Scholar 

  32. X.L. Hou, Q. Zhang, L.Y. Wang, G.H. Gao, W. Lu, ACS Appl. Mater. Interfaces 13(10), 12432 (2021). https://doi.org/10.1021/acsami.0c18741

    Article  CAS  Google Scholar 

  33. Z. Jing, Q. Zhang, Y. Cheng, C. Ji, D. Zhao, Y. Liu, W. Jia, S. Pan, S. Sang, J. Micromech. Microeng. (2020). https://doi.org/10.1088/1361-6439/ab948f

    Article  Google Scholar 

  34. A. Tewari, S. Gandla, S. Bohm, C.R. McNeill, D. Gupta, ACS Appl. Mater. Interfaces 10(6), 5185 (2018). https://doi.org/10.1021/acsami.7b15252

    Article  CAS  Google Scholar 

  35. L. Zhang, H. Li, X. Lai, T. Gao, J. Yang, X. Zeng, ACS Appl. Mater. Interfaces 10(48), 41784 (2018). https://doi.org/10.1021/acsami.8b16027

    Article  CAS  Google Scholar 

  36. A.F. Carvalho, A.J.S. Fernandes, R. Martins, E. Fortunato, F.M. Costa, Adv. Mater. Technol. (2020). https://doi.org/10.1002/admt.202000630

    Article  Google Scholar 

  37. M. Cao, M. Wang, L. Li, H. Qiu, M.A. Padhiar, Z. Yang, Nano Energy 50, 528 (2018). https://doi.org/10.1016/j.nanoen.2018.05.038

    Article  CAS  Google Scholar 

  38. X. Dong, Y. Wei, S. Chen, Y. Lin, L. Liu, J. Li, Compos. Sci. Technol. 155, 108 (2018). https://doi.org/10.1016/j.compscitech.2017.11.028

    Article  CAS  Google Scholar 

  39. X. Lü, T. Yu, F. Meng, W. Bao, Adv. Mater. Technol. (2021). https://doi.org/10.1002/admt.202100248

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 62004014 and 62004015), Science and Technology Research Project of Jilin Provincial Department of Education (JJKH20210735KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Yang.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Yang, Y., Cai, B. et al. A 3D honeycomb graphene structure for wearable piezoresistive pressure sensor with high sensitivity. J Mater Sci: Mater Electron 33, 2003–2011 (2022). https://doi.org/10.1007/s10854-021-07403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07403-2

Navigation