Skip to main content
Log in

Hydrothermal synthesis of ZnO/C microflowers for photocatalytic degradation of organic pollutants under visible light irradiation: kinetics, mechanism and recyclability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We developed an improved hexagonal wurtzite ZnO and ZnO/C microflowers through the facile hydrothermal technique. The obtained nanostructures were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX) and UV–visible diffuse reflectance spectroscopy (UV–Vis DRS). The formation of flower-like material is confirmed using SEM and TEM analysis with an average diameter of about 2 µm composed of several plate-like nanostructures. The optical analysis results show that the presence of carbon particles with ZnO structures has significantly increased the light absorption ability of nanocomposite. The photocatalytic degradation ability of prepared nanostructures was examined using methylene blue as a model pollutant. The obtained results show that the photocatalytic degradation ability of ZnO/C nanostructures is approximately two times higher than the pristine ZnO microflowers. Based on the investigation, an enhancement of the photocatalytic ability of ZnO/C nanocomposite is achieved due to the synergistic effect between carbon particles and flower-like ZnO nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. Zeng, Y. Hu, H. Huang, BiOBr0.75I0.25/BiOIO3 as a novel heterojunctional photocatalyst with superior visible-light-driven photocatalytic activity in removing diverse industrial pollutants. ACS Sustain. Chem. Eng. 5, 3897–3905 (2017)

    Article  CAS  Google Scholar 

  2. S.L. Hailu, B.U. Nair, M. Redi-Abshiro, I. Diaz, M. Tessema, Preparation and characterization of cationic surfactant modified zeolite adsorbent material for adsorption of organic and inorganic industrial pollutants. J. Environ. Chem. Eng. 5, 3319–3329 (2017)

    Article  CAS  Google Scholar 

  3. S. Wong, N.A.N. Yac’cob, N. Ngadi, O. Hassan, I.M. Inuwa, From pollutant to solution of wastewater pollution: Synthesis of activated carbon from textile sludge for dye adsorption. Chinese J. Chem. Eng. 26, 870–878 (2018)

    Article  CAS  Google Scholar 

  4. S. Khan, A. Malik, Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ. Sci. Poll. Res. 25, 4446–4458 (2018)

    Article  CAS  Google Scholar 

  5. D. Santos, C. Carvalho, R. Mouta, M.C.C. Junior, S.A.A. Santana, H.A. dos Santos Silva, C.W.B. Bezerra, Chitosan-edible oil based materials as upgraded adsorbents for textile dyes. Carbohydr. Polym. 180, 182–191 (2018)

    Article  CAS  Google Scholar 

  6. D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, Y. Liu, Q. Wei, D. Wei, A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. J. Hazard. Mater. 387, 121682 (2020)

    Article  CAS  Google Scholar 

  7. I.A. Wright, K. Paciuszkiewicz, N. Belmer, Increased water pollution after closure of Australia’s longest operating underground coal mine: a 13-month study of mine drainage, water chemistry and river ecology. Water, Air, Soil Pollut. 229, 1–20 (2018)

    Article  CAS  Google Scholar 

  8. I. Mantasha, S. Hussain, M, Ahmad, M. Shahid, Two dimensional (2D) molecular frameworks for rapid and selective adsorption of hazardous aromatic dyes from aqueous phase. Sep. Purif. Technol. 238, 116413 (2020)

    Article  CAS  Google Scholar 

  9. C. Liu, L.-Q. Yu, Y.-T. Zhao, Y.-K. Lv, Recent advances in metal-organic frameworks for adsorption of common aromatic pollutants. Microchim. Acta 185, 1–12 (2018)

    Article  CAS  Google Scholar 

  10. Y. Shen, C. Zhu, S. Song, T. Zeng, L. Li, Z. Cai, Defect-abundant covalent triazine frameworks as sunlight-driven self-cleaning adsorbents for volatile aromatic pollutants in water. Environ. Sci. Technol. 53, 9091–9101 (2019)

    Article  CAS  Google Scholar 

  11. S. Abbasi, M. Hasanpour, M.-S. Ekrami-Kakhki, Removal efficiency optimization of organic pollutant (methylene blue) with modified multi-walled carbon nanotubes using design of experiments (DOE). J. Mater. Sci.: Mater Electron. 28, 9900–9910 (2017)

    CAS  Google Scholar 

  12. M. Kamaraj, N.R. Srinivasan, G. Assefa, A.T. Adugna, M. Kebede, Facile development of sunlit ZnO nanoparticles-activated carbon hybrid from pernicious weed as an operative nano-adsorbent for removal of methylene blue and chromium from aqueous solution: extended application in tannery industrial wastewater. Environ. Technol. Innov. 17, 100540 (2020)

    Article  Google Scholar 

  13. A. Lee, M.S. Liew, Tertiary recycling of plastics waste: an analysis of feedstock, chemical and biological degradation methods. J. Mater. Cycles Waste Manag. 23, 32–43 (2021)

    Article  Google Scholar 

  14. X.W. Wang, L. Lu, C. Zhou, Z. Xin, J. Wang, X. Ke, G.B. Sheng, S. Yan, Z. Zou, Oxygen-vacancy-activated CO2 splitting over amorphous oxide semiconductor photocatalyst. ACS Catal. 8, 516–525 (2018)

    Article  CAS  Google Scholar 

  15. Y. Zhao, R. Li, L. Mu, C. Li, Significance of crystal morphology controlling in semiconductor-based photocatalysis: a case study on BiVO4 photocatalyst. Cryst. Growth Des. 17, 2923–2928 (2017)

    Article  CAS  Google Scholar 

  16. Q. Lei, S. Yang, D. Ding, J. Tan, J. Liu, R. Chen, Local-interaction-field-coupled semiconductor photocatalysis: recent progress and future challenges. J. Mater. Chem. A 9, 2491–2525 (2021)

    Article  CAS  Google Scholar 

  17. Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani, S.M.R. Darvishi, ZnO photocatalyst revisited: Effective photocatalytic degradation of emerging contaminants using S-doped ZnO nanoparticles under visible light radiation. Ind. Eng. Chem. Res. 59, 15894–15911 (2020)

    Article  CAS  Google Scholar 

  18. D. Kim, K. Yong, Boron doping induced charge transfer switching of a C3N4/ZnO photocatalyst from Z-scheme to type II to enhance photocatalytic hydrogen production. Appl. Catal. B: Environ. 282, 119538 (2021)

    Article  CAS  Google Scholar 

  19. M.M. Obeid, C. Stampfl, A. Bafekry, Z. Guan, H.R. Jappor, C.V. Nguyen, M. Naseri et al., First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate. Phy. Chem. Chem. Phy. 22, 15354–15364 (2020)

    Article  CAS  Google Scholar 

  20. S. Shanavas, S.M. Roopan, A. Priyadharsan, D. Devipriya, S. Jayapandi, R. Acevedo, P.M. Anbarasan, Computationally guided synthesis of (2D/3D/2D) rGO/Fe2O3/g-C3N4 nanostructure with improved charge separation and transportation efficiency for degradation of pharmaceutical molecules. Appl. Catal. B: Environ. 255, 117758 (2019)

    Article  CAS  Google Scholar 

  21. J. Lu, M. Jiang, M. Wei, C. Xu, S. Wang, Z. Zhu, F. Qin, Z. Shi, C. Pan, Plasmon-induced accelerated exciton recombination dynamics in ZnO/Ag hybrid nanolasers. ACS Photonics 4, 2419–2424 (2017)

    Article  CAS  Google Scholar 

  22. F. Zhang, Y.-H. Li, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Appl. Catal. B: Environ. 268, 118380 (2020)

    Article  CAS  Google Scholar 

  23. M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 62, 1–25 (2018)

    Article  CAS  Google Scholar 

  24. I.J. Ani, U.G. Akpan, M.A. Olutoye, B.H. Hameed, Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2-and ZnO-based photocatalysts: recent development. J. Clean. Prod. 205, 930–954 (2018)

    Article  CAS  Google Scholar 

  25. A. Serrà, Y. Zhang, B. Sepúlveda, E. Gomez, J. Nogués, J. Michler, L. Philippe, Highly reduced ecotoxicity of ZnO-based micro/nanostructures on aquatic biota: Influence of architecture, chemical composition, fixation, and photocatalytic efficiency. Water Res. 169, 115210 (2020)

    Article  CAS  Google Scholar 

  26. H. Wang, X. Qiu, W. Liu, D. Yang, Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity. Appl. Surf. Sci. 426, 206–216 (2017)

    Article  CAS  Google Scholar 

  27. V. Hasija, A. Sudhaik, P. Raizada, A. Hosseini-Bandegharaei, P. Singh, Carbon quantum dots supported AgI/ZnO/phosphorus doped graphitic carbon nitride as Z-scheme photocatalyst for efficient photodegradation of 2, 4-dinitrophenol. J. Environ. Chem. Eng. 7, 103272 (2019)

    Article  CAS  Google Scholar 

  28. S.A. Ansari, S.G. Ansari, H. Foaud, M.H. Cho, Facile and sustainable synthesis of carbon-doped ZnO nanostructures towards the superior visible light photocatalytic performance. New J. Chem. 41, 9314–9320 (2017)

    Article  CAS  Google Scholar 

  29. W. Zou, B. Gao, Y.S. Ok, L. Dong, Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review. Chemosphere 218, 845–859 (2019)

    Article  CAS  Google Scholar 

  30. B. Dang, Q. Li, Y. Zhou, J. Hu, J. He, Suppression of elevated temperature space charge accumulation in polypropylene/elastomer blends by deep traps induced by surface-modified ZnO nanoparticles. Compos. Sci. Technol. 153, 103–110 (2017)

    Article  CAS  Google Scholar 

  31. C. Lops, A. Ancona, K.D. Cesare, B. Dumontel, N. Garino, G. Canavese, S. Hérnandez, V. Cauda, Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro-and nano-particles of ZnO. Appl. Catal. B: Environ. 243, 629–640 (2019)

    Article  CAS  Google Scholar 

  32. S. Sultana, S. Mansingh, K.M. Parida, Facile synthesis of CeO2 nanosheets decorated upon BiOI microplate: A surface oxygen vacancy promoted z-scheme-based 2D–2D nanocomposite photocatalyst with enhanced photocatalytic activity. J. Phy. Chem. C 122, 808–819 (2018)

    Article  CAS  Google Scholar 

  33. Y. Xu, H. Li, B. Sun, P. Qiao, L. Ren, G. Tian, B. Jiang, K. Pan, W. Zhou, Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance. Chem. Eng. J. 379, 122295 (2020)

    Article  CAS  Google Scholar 

  34. S. Shanavas, A. Priyadharsan, E.I. Gkanas, R. Acevedo, P.M. Anbarasan, High efficient catalytic degradation of tetracycline and ibuprofen using visible light driven novel Cu/Bi2Ti2O7/rGO nanocomposite: kinetics, intermediates and mechanism. J. Ind. Eng. Chem. 72, 512–528 (2019)

    Article  CAS  Google Scholar 

  35. Y. Liu, D. Huang, H. Liu, T. Li, J. Wang, ZnO tetrakaidecahedrons with coexposed 001},{101}, and {100 facets: Shape-selective synthesis and enhancing photocatalytic performance. Cryst. Growth Des. 19, 2758–2764 (2019)

    Article  CAS  Google Scholar 

  36. V.Y. Zenou, Bakardjieva, Microstructural analysis of undoped and moderately Sc-doped TiO2 anatase nanoparticles using Scherrer equation and Debye function analysis. Mater. Charact. 144, 287–296 (2018)

    Article  CAS  Google Scholar 

  37. H. Liang, X. Tai, Z. Du, Y. Yin, Enhanced photocatalytic activity of ZnO sensitized by carbon quantum dots and application in phenol wastewater Opt. Mater. 100, 109674 (2020)

    CAS  Google Scholar 

  38. N. Nasseh, F.S. Arghavan, S. Rodriguez-Couto, A.H. Panahi, M. Esmati, T.J. A-Musawi, Preparation of activated carbon@ ZnO composite and its application as a novel catalyst in catalytic ozonation process for metronidazole degradation. Adv. Powder Technol. 31, 875–885 (2020)

    Article  CAS  Google Scholar 

  39. D. Balram, K.-Y. Lian, N. Sebastian, Synthesis of a functionalized multi-walled carbon nanotube decorated ruskin michelle-like ZnO nanocomposite and its application in the development of a highly sensitive hydroquinone sensor. Inorg. Chem. Front. 5, 1950–1961 (2018)

    Article  CAS  Google Scholar 

  40. W. Jia, B. Jia, F. Qu, X. Wu, Towards a highly efficient simulated sunlight driven photocatalyst: a case of heterostructured ZnO/ZnS hybrid structure. Dalton Trans. 42, 14178–14187 (2013)

    Article  CAS  Google Scholar 

  41. L. Miao, B. Shi, S. Nawrat, Mu. Chaomin, K. Qi, Facile synthesis of hierarchical ZnO microstructures with enhanced photocatalytic activity. Mater. Sci. Poland 35, 45–49 (2017)

    Article  CAS  Google Scholar 

  42. C. Xu, Y. Wang, H. Chen, Rapid and simple synthesis of 3D ZnO microflowers at room temperature. Mater. Lett. 158, 347–350 (2015)

    Article  CAS  Google Scholar 

  43. F. Liao, X. Han, Y. Zhang, C. Xu, H. Chen, Hydrothermal synthesis of flower-like zinc oxide microstructures with large specific surface area, J. Mater. Sci.: Mater. Electron. 28, 16855–16860 (2017)

    CAS  Google Scholar 

  44. L. Fang, B. Zhang, W. Li, J. Zhang, K. Huang, Q. Zhang, Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors. Electrochim. Acta 148, 164–169 (2014)

    Article  CAS  Google Scholar 

  45. J. Xue, S. Ma, Y. Zhou, Z. Zhang, Facile synthesis of ZnO–C nanocomposites with enhanced photocatalytic activity. New J. Chem. 39, 1852–1857 (2015)

    Article  CAS  Google Scholar 

  46. C. Sasirekha, S. Arumugam, G. Muralidharan, Green synthesis of ZnO/carbon (ZnO/C) as an electrode material for symmetric supercapacitor devices. Appl. Surf. Sci. 449, 521–527 (2018)

    Article  CAS  Google Scholar 

  47. H. Osman, Z. Su, X. Ma, S. Liu, X. Liu, D. Abduwayit, Synthesis of ZnO/C nanocomposites with enhanced visible light photocatalytic activity. Ceram. Int. 42, 10237–10241 (2016)

    Article  CAS  Google Scholar 

  48. C. Yang, X. Wang, Y. Ji, T. Ma, F. Zhang, Y. Wang, M. Ci, D. Chen, A. Jiang, W. Wang, Photocatalytic degradation of methylene blue with ZnO@C nanocomposites: Kinetics, mechanism, and the inhibition effect on monoamine oxidase A and B. NanoImpact 15, 100174 (2019)

    Article  Google Scholar 

  49. N.M. Denisov, E.B. Chubenko, V.P. Bondarenko, V.E. Borisenko, Black ZnO/C nanocomposite photocatalytic films formed by one-step sol–gel technique. J. Sol-Gel Sci. Technol. 85, 413–420 (2018)

    Article  CAS  Google Scholar 

  50. S. Shajahan, P. Arumugam, R. Rajendran, P.M. Anbarasan, Optimization and detailed stability study on Pb doped ceria nanocubes for enhanced photodegradation of several anionic and cationic organic pollutants. Arabian J. Chem. 13, 1309–1322 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. C. Shibu or J. Duraimurugan.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibu, M.C., Benoy, M.D., Shanavas, S. et al. Hydrothermal synthesis of ZnO/C microflowers for photocatalytic degradation of organic pollutants under visible light irradiation: kinetics, mechanism and recyclability. J Mater Sci: Mater Electron 33, 9412–9424 (2022). https://doi.org/10.1007/s10854-021-07375-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07375-3

Navigation