Skip to main content
Log in

Investigation on the effect of metal contacts on the vertical MnO2 nanowire array-based Schottky barrier diodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reflects the successful fabrication of manganese dioxide (MnO2) nanowires (NW) by glancing angle deposition technique. The impact of metals like gold (Au) and silver (Ag) on the electrical characteristics of the metal–semiconductor junction were scrutinised. Evaluation of the junction parameters like ideality factor, series resistance, Schottky barrier height and interface index parameters were done. Capacitance voltage measurements exhibit a typical metal oxide semiconductor behaviour which includes the accumulation, depletion and the inversion regime. Upon collating with the junction parameters of Au and Ag, it was found that Au proves to be a better candidate than Ag, and is applicable especially in optoelectronics application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NW:

Nanowires

GLAD:

Glancing angle deposition

Au:

Gold

Ag:

Silver

MS:

Metal–semiconductor

SBD:

Schottky barrier diodes

FESEM:

Field emission scanning electron microscope

TF:

Thin film

Cu:

Copper

Pt:

Platinum

IV :

Current–voltage

CV :

Capacitance–voltage

SBH:

Schottky barrier height

IF:

Ideality factor

References

  1. L.J. Brillson, Y. Lu, J. Appl. Phys. 109, 121301 (2011)

    Article  Google Scholar 

  2. H. Kim, W. Jang, H. Lim, Y. Kweon, M. Bang, S. Kwon, B. Kim, H. Cho, H. Jeon, J. Vac. Sci. Technol. B 36, 032202 (2018)

    Article  Google Scholar 

  3. M.A. Mayimele, M. Diale, W. Mtangi, F.D. Auret, Mater. Sci. Semicond. Process. 34, 359–364 (2015)

    Article  CAS  Google Scholar 

  4. R.T. Tung, Phys. Rev. Lett. 84, 011304 (2000)

    Article  Google Scholar 

  5. F. Hossein-Babaei, M.M. Lajvardi, N. Alaei-Sheini, Appl. Phys. Lett. 106, 083503 (2015)

    Article  Google Scholar 

  6. H. Guan-Qun, Y.-R. Liu, W.-H. Hu, B. Dong, X. Li, X. Shang, Y.-M. Chai, Y.-Q. Liu, C.-G. Liu, J. Electrochem. Soc. 163, H67 (2015)

    Google Scholar 

  7. X. Wang, Y. Li, Chemistry A 9, 300–306 (2003)

    Google Scholar 

  8. W. Tang, X. Shan, S. Li, H. Liu, X. Wu, Y. Chen, Mater. Lett. 132, 317–321 (2014)

    Article  CAS  Google Scholar 

  9. H. Kumar, P.S. Manisha, P. Sangwan, Int. J. Chem. Chem. Eng. 3, 155 (2013)

    Google Scholar 

  10. S.A. Lynrah, P. Pheiroijam, P. Chinnamuthu, IEEE Sens. J. 21, 1485–1492 (2020)

    Article  Google Scholar 

  11. S.A. Lynrah, P. Chinnamuthu, in IEEE Region 10 Conference (TENCON), Glancing Angle Synthesised MnO2 Nanowire Array Based Fast Response Schottky Detector (IEEE, 2020), pp. 82–85

  12. N.K. Singh, B. Choudhuri, A. Mondal, J.C. Dhar, T. Goswami, S. Saha, C. Ngangbam, Electron. Mater. Lett. 10, 975–980 (2014)

    Article  Google Scholar 

  13. P. Chinnamuthu, J.C. Dhar et al., J. Phys. D 45, 135102 (2012)

    Article  Google Scholar 

  14. G. Çankaya, N. Ucar, Zeitschrift für Naturforschung A 59, 795–798 (2004)

    Article  Google Scholar 

  15. M. Erkovan, E. Şentürk, Y. Şahin, M. Okutan, J. Nanomater. 2013, 1–6 (2013)

    Article  Google Scholar 

  16. S. Bhunia, D.N. Bose, J. Appl. Phys. 87, 2931–2935 (2000)

    Article  CAS  Google Scholar 

  17. P.K. Kalita, B.K. Sarma, H.L. Das, Bull. Mater. Sci. 26, 613–617 (2003)

    Article  CAS  Google Scholar 

  18. R. Labar, T.K. Kundu, J. Electron. Mater. 47, 3628–3633 (2018)

    Article  CAS  Google Scholar 

  19. A. Zekry, A.Y. Al-Mazroo, IEEE Trans. Electron. Devices. 43, 691–670 (1996)

    Article  CAS  Google Scholar 

  20. C.Y. Kim, H.S. Lee et al., J. Korean Phys. Soc. 57, 1976 (2010)

    Article  CAS  Google Scholar 

  21. Y. Vaknin, R. Dagan, Y. Rosenwaks, Nanomaterials 10, 2346 (2020)

    Article  CAS  Google Scholar 

  22. R. Omar, B.A. Mohamed, M. Adel, Eur. Phys. J. Plus 130, 1–13 (2015)

    Article  CAS  Google Scholar 

  23. A. Kaya, H. Tecimer, Ö. Vural, İH. Taşdemir, Ş Altındal, IEEE Trans. Electron. Devices 61, 584–590 (2014)

    Article  CAS  Google Scholar 

  24. P. Chattopadhyay, B. Raychaudhuri, Solid-state Electron. 36, 605–610 (1993)

    Article  CAS  Google Scholar 

  25. A. Keffous, M. Siad et al., Appl. Surf. Sci. 236, 42–49 (2004)

    Article  CAS  Google Scholar 

  26. T.Q. Tuy, B. Szentpáli, I. Mojzes, Period. Polytech. Electr. Eng. 37, 3 (1993)

    Google Scholar 

  27. S.M. Faraz, M. Willander, Q. Wahab, in IEEE 14th International Multitopic Conference, Current Transport Studies and Extraction of Series Resistance of Pd/ZnO Schottky Diode (IEEE, 2011), pp. 196–200

  28. G. Güler, Ö. Güllü, Ş Karataş, Ö.F. Bakkaloğlu, J. Phys. Conf. Ser. 153, 012054 (2009)

    Article  Google Scholar 

  29. G.E. Ponchak, II. in Metal–Semiconductor Junctions, GaAs MMIC Reliability Assurance Guideline for Space Applications, vol. 24 (1996)

  30. C.H. Belgacem, A.A. El-Amine, SILICON 10, 1063 (2018)

    Article  Google Scholar 

  31. C.-C. Chen, M. Aykol, C.-C. Chang, A.F.J. Levi, S.B. Cronin, Nano Lett. 11, 1863 (2011)

    Article  CAS  Google Scholar 

  32. R.K. Gupta, K. Ghosh, P.K. Kahol, Physica E 42, 1509 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the NCPRE for the FESEM analysis. They are also grateful to the NIT Nagaland for providing the facilities.

Funding

This work is ostensibly supported and funded by SERB, DST, Government of India (EEQ/2017/000138).

Author information

Authors and Affiliations

Authors

Contributions

Both the authors have contributed, discussed the results and approved the final manuscript. SAL has carried out the experiment and investigates the data with the support of PC who conceived the original idea and supervised the work.

Corresponding author

Correspondence to P. Chinnamuthu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in preparing this article.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynrah, S.A., Chinnamuthu, P. Investigation on the effect of metal contacts on the vertical MnO2 nanowire array-based Schottky barrier diodes. J Mater Sci: Mater Electron 33, 23910–23917 (2022). https://doi.org/10.1007/s10854-021-07373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07373-5

Navigation