Skip to main content
Log in

Enhanced photocatalytic, electrochemical and antimicrobial activities of α-Mn2V2O7 nanopebbles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Manganese(II) divanadate nanopebbles (α-Mn2V2O7) were prepared by a simple solution combustion method and calcinated at 400 °C for 3 h. X-ray diffraction studies and Fourier transform infrared spectroscopy confirmed the monoclinic structure of α-Mn2V2O7 nanoparticles with metallic bond (Mn–O, V–O and V–O–V) vibrations. Morphological features of manganese(II) divanadate nanoparticles were observed as pebble-like morphology via scanning electron microscopy and high resolution transmission electron microscopic analysis. The photocatalytic activities of manganese(II) divanadate nanopebbles have been evaluated by photocatalytic degradation of methylene blue in an aqueous solution as a model pollutant under the visible light irradiation. Pseudocapacitance nature of prepared manganese(II) divanadate nanopebbles were investigated by electrochemical impedance spectroscopy and cyclic voltammetric techniques in 5 mM aqueous KCl electrolyte. Further, the antimicrobial property of manganese(II) divanadate nanopebbles were investigated using various bacterial and fungus strains using well diffusion method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S.E. Arasi, R. Ranjithkumar, P. Devendran, M. Krishnakumar, A. Arivarasan, Investigation on electrochemical behaviour of manganese vanadate nanopebbles as potential electrode material for supercapacitors. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.157628

    Article  Google Scholar 

  2. A.A. Jamaludin, Z. Ilham, N.E.I. Zulkifli, W.A.A.Q.I. Wan-Mohtar, S.A. Halim-Lim, H. Ohgaki, K. Ishihara, Y. Akitsu, Understanding perception and interpretation of Malaysian university students on renewable energy. AIMS Energy 8, 1029–1044 (2020)

    Article  Google Scholar 

  3. J. Zhang, W. Hu, S. Cao, L. Piao, Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. (2020). https://doi.org/10.1007/s12274-020-2880-z

    Article  Google Scholar 

  4. Z. Yu, H. Liu, M. Zhu, Y. Li, W. Li, Interfacial charge transport in 1D TiO2 based photoelectrodes for photoelectrochemical water splitting. Small (2019). https://doi.org/10.1002/smll.201903378

    Article  Google Scholar 

  5. K.H.A. Fujishmia, Molecular electrochemical photolysis of water at a semiconductor electrode one and two-dimensional structure of alpha-helix and beta-sheet forms of poly (l-alanine) shown by specific heat measurements at low temperaturse (1.5–20 K). Nature 238, 37–38 (1972)

    Article  Google Scholar 

  6. V.L. Ranganatha, K.S. Nithin, S.A. Khanum, G. Nagaraju, C. Mallikarjunaswamy, in Zinc oxide nanoparticles: a significant review on synthetic strategies, characterization and applications, AIP Conference Proceedings, (AIP Publishing, 2019), p. 20089

  7. C. Mallikarjunaswamy, V.L. Ranganatha, R. Ramu, G. Nagaraju, Facile microwave-assisted green synthesis of ZnO nanoparticles: application to photodegradation, antibacterial and antioxidant. J. Mater. Sci.: Mater. Electron. 31, 1004–1021 (2020)

    CAS  Google Scholar 

  8. M.S. Hamdy, H.S.M. Abd-Rabboh, M. Benaissa, M.G. Al-Metwaly, A.H. Galal, M.A. Ahmed, Fabrication of novel polyaniline/ZnO heterojunction for exceptional photocatalytic hydrogen production and degradation of fluorescein dye through direct Z-scheme mechanism. Opt. Mater. (Amst) 117, 111198 (2021)

    Article  CAS  Google Scholar 

  9. B.S. Surendra, C. Mallikarjunaswamy, S. Pramila, N.D. Rekha, Bio-mediated synthesis of ZnO nanoparticles using Lantana camara flower extract: its characterizations, photocatalytic, electrochemical and anti-inflammatory applications. Environ. Nanotechnol. Monit. Manag. 15, 100442 (2021)

    Google Scholar 

  10. V.L. Ranganatha, S. Pramila, G. Nagaraju, B.S. Surendra, C. Mallikarjunaswamy, Cost-effective and green approach for the synthesis of zinc ferrite nanoparticles using Aegle marmelos extract as a fuel: catalytic, electrochemical, and microbial applications. J. Mater. Sci.: Mater. Electron. 31(20), 17386–403 (2020)

    Google Scholar 

  11. S. Pramila, G. Nagaraju, C. Mallikarjunaswamy, K.C. Latha, S. Chandan, R. Ramu, V. Rashmi, V. Lakshmi Ranganatha, Green synthesis of BiVO4 nanoparticles by microwave method using Aegle marmelos juice as a fuel: photocatalytic and antimicrobial study. Anal. Chem. Lett. 10, 298–306 (2020)

    Article  CAS  Google Scholar 

  12. H.S.M. Abd-Rabboh, M. Benaissa, M.S. Hamdy, M.A. Ahmed, M. Glal, Synthesis of an efficient, and recyclable mesoporous BiVO4/TiO2 direct Z-scheme heterojunction by sonochemical route for photocatalytic hydrogen production and photodegradation of rhodamine B dye in the visible region. Opt. Mater. (Amst) 114, 110761 (2021)

    Article  CAS  Google Scholar 

  13. C. Mallikarjunaswamy, S. Pramila, G. Nagaraju, R. Ramu, V.L. Ranganatha, Green synthesis and evaluation of antiangiogenic, photocatalytic, and electrochemical activities of BiVO4 nanoparticles. J. Mater. Sci.: Mater. Electron. 32, 14028–14046 (2021)

    CAS  Google Scholar 

  14. T.I. Shaheen, A. Fouda, S.S. Salem, Integration of cotton fabrics with biosynthesized CuO nanoparticles for bactericidal activity in the terms of their cytotoxicity assessment. Ind. Eng. Chem. Res. (2021). https://doi.org/10.1021/acs.iecr.0c04880

    Article  Google Scholar 

  15. A. Muthuvel, M. Jothibas, C. Manoharan, Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity. Nanotechnol. Environ. Eng. 5, 1–19 (2020)

    Article  Google Scholar 

  16. N. Al-Zaqri, A. Alsalme, M.A. Ahmed, A.H. Galal, Construction of novel direct Z-scheme AgIO4-g-C3N4 heterojunction for photocatalytic hydrogen production and photodegradation of fluorescein dye. Diam. Relat. Mater. 109, 108071 (2020)

    Article  CAS  Google Scholar 

  17. S. Wang, P. Xu, J. Tian, Z. Liu, L. Feng, Phase structure tuning of graphene supported Ni-NiO Nanoparticles for enhanced urea oxidation performance. Electrochim. Acta 370, 137755 (2021)

    Article  CAS  Google Scholar 

  18. G. Murugadoss, D.D. Kumar, M.R. Kumar, N. Venkatesh, P. Sakthivel, Silver decorated CeO2 nanoparticles for rapid photocatalytic degradation of textile rose bengal dye. Sci. Rep. 11, 1–13 (2021)

    Article  Google Scholar 

  19. M.A. Ahmed, N. Al-Zaqri, A. Alsalme, A.H. Glal, M. Esa, Rapid photocatalytic degradation of RhB dye and photocatalytic hydrogen production on novel curcumin/SnO2 nanocomposites through direct Z-scheme mechanism. J. Mater. Sci.: Mater. Electron. 31, 19188–19203 (2020)

    Google Scholar 

  20. N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan, R. Hazan, Alternative antimicrobial approach: nano-antimicrobial materials. Evid. Based Complement Altern. Med. (2015). https://doi.org/10.1155/2015/246012

    Article  Google Scholar 

  21. M.G. Correa, F.B. Martínez, C.P. Vidal, C. Streitt, J. Escrig, C.L. de Dicastillo, Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. Beilstein J. Nanotechnol. 11, 1450–1469 (2020)

    Article  CAS  Google Scholar 

  22. V. Sivakumar, R. Suresh, K. Giribabu, BiVO4 nanoparticles: preparation, characterization and photocatalytic activity. Cogent Chem. (2015). https://doi.org/10.1080/23312009.2015.1074647

    Article  Google Scholar 

  23. F. Motahari, M.R. Mozdianfard, F. Soofivand, M. Salavati-Niasari, NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv. (2014). https://doi.org/10.1039/C4RA02697G

    Article  Google Scholar 

  24. J.I. Viegas, R.L. Moreira, A. Dias, Polymorphism and optical–vibration properties of MnV2O6·n H2O (n= 0, 2, 4) prepared by microwave irradiation. Cryst. Growth Des. 19, 3233–3243 (2019)

    Article  CAS  Google Scholar 

  25. G. Nagaraju, H. Nagabhushana, R.B. Basavaraj, G.K. Raghu, D. Suresh, H. Rajanaika, S.C. Sharma, Green, nonchemical route for the synthesis of ZnO superstructures, evaluation of its applications toward photocatalysis, photoluminescence, and biosensing. Cryst. Growth Des. 16, 6828–6840 (2016)

    Article  Google Scholar 

  26. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Mallikarjunaswamy C thanks Vision Group of Science and Technology (RGS-F/GRD No. 1001/2020-21/154 dated: 26-08-2021) Govt. of Karnataka for providing financial support and Dr. Lakshmi Ranganatha R gratefully acknowledges the Management and Principals of JSS College of Arts, Commerce and Science, Ooty Road, Mysuru and The National Institute of Engineering (NIE), Mysuru for constant support and providing the laboratory facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Mallikarjunaswamy or V. Lakshmi Ranganatha.

Ethics declarations

Conflict of interest

Authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallikarjunaswamy, C., Pramila, S., Nagaraju, G. et al. Enhanced photocatalytic, electrochemical and antimicrobial activities of α-Mn2V2O7 nanopebbles. J Mater Sci: Mater Electron 33, 617–634 (2022). https://doi.org/10.1007/s10854-021-07331-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07331-1

Navigation