Skip to main content

Advertisement

Log in

Insights into the mechanism of ZnO/g–C3N4 nanocomposites toward photocatalytic degradation of multiple organic dyes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphitic–carbon nitride (g–C3N4)-based zinc oxide (ZnO) nanocomposite (ZnO/g–C3N4) is synthesized via precipitation-assisted thermal condensation method. Structure, composition, and morphology of the bare and composite materials are examined through various techniques. XRD results confirmed the hexagonal wurtzite phase of the ZnO in the composites, FTIR analysis revealed the structural information such as Zn–O bond in bare-ZnO and presence of triazine-ring units in ZnO/g–C3N4 (ZnO/CN) nanocomposite corresponding to the presence of g–C3N4. UV–DRS results showed that the absorbance of ZnO/CN is shifted toward the lower band gap energy (red shift) as compared to bare-ZnO. Photocatalytic degradation of methylene blue and Acid blue 113 dyes over ZnO/CN nanocomposites is found to be higher with degradation of around 97 and 83% at the end of 90 and 120 min, respectively. The radical scavenger studies revealed that the radical species responsible for the degradation of the dye molecules are O2· and ·OH radicals, and the stability studies demonstrated that the synthesized composites are chemically and photo-catalytically stable for sustainable photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Vassem, A. Umar, Y.B. Hahn, ZnO Nanoparticles: Growth, Properties and Applications (American Scientific Publishers, Valencia, 2004), pp. 1–6

    Google Scholar 

  2. K. Sukriti, C. Prakash, Influence of different solvents on the structural, optical, impedance and dielectric properties of ZnO nanoflakes. Chin. J. Phys. 57, 28–46 (2019)

    Article  Google Scholar 

  3. C. Habib, M. Charfeddine, J. Jalila, E. Hatem, Study of structural, optical and electrical properties of SnO doped TiO thin films prepared by a facile sol–gel route. Inorg. Chem. Commun. 124, 108401 (2021)

    Article  Google Scholar 

  4. J.A. Anta et al., ZnO-based dye sentized solar cells. J. Phys. Chem. C 116(21), 11413–11425 (2012)

    Article  CAS  Google Scholar 

  5. S. Kim, Photocatalytic activity of SnO2 nanoparticles in MB degradation. Mater. Res. Bull. 74, 85–89 (2019)

    Article  Google Scholar 

  6. J. Sima, P. Hasal, Photocatalytic degradation of textile dyes in a TiO2/UV system. Chem. Eng. Trans. 32, 79–84 (2018)

    Google Scholar 

  7. A. Tabib, W. Bouslama, B. Sieber, A. Addad, H. Elhouichet, R. Boukherroub, Structural and optical properties of Na doped ZnO nanocrystals: application to solar photocatalysis. Appl. Surf. Sci. 396, 1528–1538 (2017)

    Article  CAS  Google Scholar 

  8. M. Tauseef, I. Faisal, Y. Sadaf, M. Khalid, H. Altaf, Multi metal oxide NiO–CdO–ZnO nanocomposite—synthesis, structural, optical, electrical properties and enhances sunlight driven photocatalytic activity. Ceram 46(2), 2421–2427 (2020)

    Google Scholar 

  9. M. Zhou, W. Hag, Y. Zhao, Z. Jin, X. Hua, L. Kai, L. Tang, Z. Cai, 2D g–C3N4/BiOBr heterojunctions with enhanced visible light photocatalytic activity. J. Nanoparticle Res. 22, 13 (2020)

    Article  CAS  Google Scholar 

  10. N. Jayaprakash, R. Suresh, S. Rajalakshmi, S. Raja, E. Sundaravadivel, M. Gayathri, M. Sridharan, One-step synthesis, characterisation, photocatalytic & biomedical applications of ZnO plates. Mater. Technol. 35(2), 112–124 (2020)

    Article  CAS  Google Scholar 

  11. S. Liang, K. Xiao, Y. Mof, X. Huang, A novel ZnO nanoparticles blended polyvinylidene fluoride membrane for anti-irreversible fouling. J. Membr. Sci 394, 184–192 (2012)

    Article  Google Scholar 

  12. M.S. Lassoued, A. Lassoued, S. Ammar, A.B. Salah, S.G. Granda, Expression of concern: synthesis and characterization of co-doped nanoTiO2, through coprecipitation method for photocatalytic activity. J. Mater. Sci.: Mater. Electron 32, 2653 (2021)

    CAS  Google Scholar 

  13. D.V. Sridevi, P. Kanagaraj, E. Sundaravadivel, Influence of Fe doping on structural physiochemical and biological properties of CdSe nanoparticle. Mater. Semicond. Process. 101, 67–75 (2019)

    Article  CAS  Google Scholar 

  14. Y. Wan, X. Bai, C. Pan, J. He, Y. Zhu, Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. J. Mater. Chem. 22, 11568–11573 (2012)

    Article  Google Scholar 

  15. C. Pan, J. Xy, Y. Wang, D. Li, Y. Zhu, Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv. Funct. Mater. 22, 1518–1524 (2012)

    Article  CAS  Google Scholar 

  16. Y. Wang, Q. Wang, X. Zhang., F. Wang., M. Safdar, J. He, VL driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5, 8326–8339 (2013)

    Article  CAS  Google Scholar 

  17. M. Gayathri, M. Santhi, E. Satheeshkumar, N. Jayaprakssh, E. Sundaravadivel, Preparation and characterization of boron doped CN’S/MnO2 nanocomposite and its photocatalytic application of dye degradation. Mater. Today. Proc. 42(2), 1506–1512 (2021)

    Article  CAS  Google Scholar 

  18. H.A. Khawal, U.P. Gawai, K. Asokan, B. Dole, Modified structural, surface, morphological and optical studies of Li3+ swift heavy ion irradiation on ZnO nanoparticles. RSC Adv. 6, 49068 (2016)

    Article  CAS  Google Scholar 

  19. S. Zhang, C. Su, H. Ren, M. Li, L. Zhu, S. Ge, M. Wang, Z. Zhang, L. Li, X. Cao, In-situ fabrication of g–C3N4/ZnO nanocomposites for photocatalytic degradation of MB: synthesis procedure matter. Nanomaterials 9, 215 (2019)

    Article  Google Scholar 

  20. W. Wang, J.C. YU, D. Xia., P.K. Wong, Y. Li, Graphene& g-C3N4 nanosheets cowrapped elemental alpha-sulfur as novel metal-free heterojunction photocatalyst for bacterial inactivation under visible light. Environ. Sci. Technol. 47, 8724–8732 (2013)

    Article  CAS  Google Scholar 

  21. S. Talam, S.R. Karumuri, N. Gunnam, Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Nanotechnology 2, 1–6 (2012)

    Google Scholar 

  22. M. Pudukudy, Facile synthesis of Quasi spherical ZnO nanoparticles with excellent photocatalytic activity. J. Clust. Sci. 26, 1187–1201 (2015)

    Article  CAS  Google Scholar 

  23. Z. Zhu, D. Yang, H. Liu, Microwave assisted hydrothermal synthesis of ZnO rod assembled microsphere and their photocatalytic performance. Adv. Powder. Technol. 22, 493 (2011)

    Article  Google Scholar 

  24. M. Reddy, G. Reddy, K. Chennakesavalu, E. Sundaravadivel, S.S. Prasath, A.M. Rabel, J. Sreeramalu, Synthesis of zinc oxide and carbon nanotube composites by CVD method: photocatalytic studies. J. Porous. Mater. 24, 149–156 (2017)

    Article  Google Scholar 

  25. VVattikudi Reddy AK., J. Shim, C. Byou, VL driven photocatalytic activity of SnO2–ZnO Quqntum anchored on g–C3N4 nanosheets for photocatalytic pollutant degradation&H2 production. ACS Omega 3, 7587–7602 (2018)

    Article  Google Scholar 

  26. K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, Y. Lu, In-situ-reduced synthesis of Ti3+ self doped TiO2/g–C3N4 heterojunctions with high photocatalytic performance under LED-light. ACS Appl. Mater. Interfaces 7, 9023–9030 (2015)

    Article  CAS  Google Scholar 

  27. X. Yang, F. Qian, G. Zou, M. Li, Y. Li, M. Bao, Facile fabrication of acidified g–C3N4/g–C3N4 hybrids with enhanced photocatalysis performance under VL irradiation. Appl. Catal. B Environ. 193, 22–35 (2016)

    Article  CAS  Google Scholar 

  28. Y. Wang, R. Shi, J. Lin, Y. Zhu, Enhancement of photocurrent and photocatalytic acrivity of ZnO hybridized with graphitite-like C3N4. Energy Environ. Sci. 4, 2922–2929 (2021)

    Article  Google Scholar 

  29. Y. Hou, A.B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dhal, J. Chorkendrof, Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem. Int. Ed. 52, 3621–3625 (2013)

    Article  CAS  Google Scholar 

  30. X. Zhong, M. Jin, H. Dong, L. Liu, L. Wang, H. Yu, S. Leng, G. Zhuang, X. Li, Wang TiO2 nanobelts with a uniform coating of g–C3N4 as a highly effective heterostructure for enhanced photocatalytic activities. J. Solid. State. Chem. 220, 54–59 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors M.G, E.S & E.S acknowledge NRC, SCIF, SRMIST for providing research facilities and Department of Chemistry, SRM IST for providing dean fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sundaravadivel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayathri, M., Sakar, M., Satheeshkumar, E. et al. Insights into the mechanism of ZnO/g–C3N4 nanocomposites toward photocatalytic degradation of multiple organic dyes. J Mater Sci: Mater Electron 33, 9347–9357 (2022). https://doi.org/10.1007/s10854-021-07302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07302-6

Navigation