Skip to main content
Log in

In situ-grown ZnO particles on g-C3N4 layers: a direct Z-scheme-driven photocatalyst for the degradation of dye and pharmaceutical pollutants under solar irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Composite photocatalyst based on in situ-grown ZnO particles on graphitic-carbon nitride (g-C3N4) layers is developed via hydrothermal process. The crystalline phase and chemical state of materials integrated in the composite is confirmed via X-ray diffraction and X-ray photoelectron spectroscopy studies, which indicated the formation of impurity and relatively defective systems. The irregular morphology with average particle size of 100 nm for ZnO and layered structure of g-C3N4 is observed via high-resolution transmission electron microscopy images. The observed ultraviolet (UV)–Vis absorption profile represented the synergistic optical enhancement in the system due to the amalgamation of materials with narrow (g-C3N4) and wide (ZnO) bandgap structures. The photocatalytic efficiency of the developed g-C3N4/ZnO composite is examined for its ability to degrade methylene blue, rhodamine B and ciprofloxacin molecules and found degrading ~ 100, 98 and 96% of molecules at the end of 50, 100, and 180 min, respectively. The scavenger studies indicated that the superoxide anions are the key radicals and followed by hydroxyl radicals for the observed superior degradation efficiency of the composite. It is proposed based on the observed results that the formed g-C3N4/ZnO composite follows the direct Z-scheme mechanism for the charge transfer and photoredox reactions for the effective degradation of various pollutants. The reusability studies up to 5 cycles demonstrated that the developed g-C3N4/ZnO composite is sustainable for the industrial photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.S. Chang, J. Strunk, M.N. Chong, P.E. Poh, J.D. Ocon, Multi-dimensional zinc oxide (ZnO) nanoarchitectures as efficient photocatalysts: what is the fundamental factor that determines photoactivity in ZnO? J. Hazard. Mater. 381, 120958 (2020)

    Article  CAS  Google Scholar 

  2. R. Vittal, K.C. Ho, Zinc oxide based dye-sensitized solar cells: a review. Renew. Sustain. Energy Rev. 70, 920–935 (2017)

    Article  CAS  Google Scholar 

  3. M. Que, C. Lin, J. Sun, L. Chen, X. Sun, Y. Sun, Progress in ZnO nanosensors. Sensors 21, 5502 (2021)

    Article  CAS  Google Scholar 

  4. K. Liu, M. Sakurai, M. Aono, ZnO-based ultraviolet photodetectors. Sensors 10, 8604–8634 (2010)

    Article  CAS  Google Scholar 

  5. C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018)

    Article  CAS  Google Scholar 

  6. V. Kumari, A. Mittal, J. Jindal, S. Yadav, N. Kumar, N- and C-doped ZnO as semiconductor photocatalysts: a review. Front. Mater. Sci. 13, 1–22 (2019)

    Article  Google Scholar 

  7. M.A.M. Adnan, N.M. Julkapli, S.B. Abd Hamid, Review on ZnO hybrid photocatalyst: impact on photocatalytic activities of water pollutant degradation. Rev. Inorg. Chem. 36, 77–104 (2016)

    Google Scholar 

  8. W. Liu, M. Wang, C. Xu, S. Chen, Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties. Chem. Eng. J. 209, 386–393 (2012)

    Article  CAS  Google Scholar 

  9. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016)

    Article  CAS  Google Scholar 

  10. A. Nawaz, A. Kuila, N.S. Mishra, K.H. Leong, L.C. Sim, P. Saravanan, M. Jang, Challenges and implication of full solar spectrum-driven photocatalyst. Rev. Chem. Eng. 37, 533–560 (2021)

    Article  Google Scholar 

  11. S.B. Rawal, S. Bera, D. Lee, D. Jang, W.I. Lee, Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: effect of their relative energy band positions on the photocatalytic efficiency. Catal. Sci. Technol. 3, 1822 (2013)

    Article  CAS  Google Scholar 

  12. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234 (2014)

    Article  CAS  Google Scholar 

  13. E. Jang, D.W. Kim, S.H. Hong, Y.M. Park, T.J. Park, Visible light-driven g-C3N4@ZnO heterojunction photocatalyst synthesized via atomic layer deposition with a specially designed rotary reactor. Appl. Surf. Sci. 487, 206 (2019)

    Article  CAS  Google Scholar 

  14. H. Jung, T.T. Pham, E.W. Shin, Effect of g-C3N4 precursors on the morphological structures of g-C3N4/ZnO composite photocatalysts. J. Alloys Compd. 788, 1084 (2019)

    Article  CAS  Google Scholar 

  15. Q. Zhong, H. Lan, M. Zhang, H. Zhu, M. Bu, Preparation of heterostructure g-C3N4/ZnO nanorods for high photocatalytic activity on different pollutants (MB, RhB, Cr(VI) and eosin). Ceram. Int. 46, 12192 (2020)

    Article  CAS  Google Scholar 

  16. A. Mathialagan, M. Manavalan, K. Venkatachalam, F. Mohammad, W.C. Oh, S. Sagadevan, Fabrication and physicochemical characterization of g-C3N4/ZnO composite with enhanced photocatalytic activity under visible light. Opt. Mater. 100, 109643 (2020)

    Article  CAS  Google Scholar 

  17. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017)

    Article  Google Scholar 

  18. J.Z. Kong, H.F. Zhai, W. Zhang, S.S. Wang, X.R. Zhao, M. Li, H. Li, A.D. Li, D. Wu, Visible light-driven photocatalytic performance of N-doped ZnO/g-C3N4 nanocomposites. Nanoscale Res. Lett. 12, 526 (2017)

    Article  Google Scholar 

  19. R.C. Ngullie, S.O. Alaswad, K. Bhuvaneswari, P. Shanmugam, T. Pazhanivel, P. Arunachalam, Synthesis and characterization of efficient ZnO/g-C3N4 nanocomposites photocatalyst for photocatalytic degradation of methylene blue. Coatings 10, 500 (2020)

    Article  CAS  Google Scholar 

  20. J. Shen, P. Wang, H. Jiang, H. Wang, B.G. Pollet, R. Wang, S. Ji, MOF derived graphitic carbon nitride/oxygen vacancies-rich zinc oxide nanocomposites with enhanced supercapacitive performance. Ionics 26, 5155–5165 (2020)

    Article  CAS  Google Scholar 

  21. D. Sharma, A. Saini, D. Choudhary, M. Kumari, A. Chaudhary, V. Dhayal, In situ synthesis of ZnO modified g-C3N4 composite: a potential photocatalyst and adsorbent for waste water remediation. Mater. Res. Innov. (2021). https://doi.org/10.1080/14328917.2021.1901424

    Article  Google Scholar 

  22. N. Mukwevho, N. Kumar, E. Fosso-Kankeua, F. Waanders, J. Bunt, S.S. Ray, Visible light-excitable ZnO/2D graphitic-C3N4 heterostructure for the photodegradation of naphthalene. Desalin. Water Treat. 163, 286–296 (2019)

    Article  CAS  Google Scholar 

  23. M. Nemiwal, T.C. Zhang, D. Kumar, Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: strategies to improve photocatalytic activity. Sci. Total Environ. 767, 144896 (2021)

    Article  CAS  Google Scholar 

  24. J. Xue, J. Bao, Interfacial charge transfer of heterojunction photocatalysts: characterization and calculation. Surf. Interfaces 25, 101265 (2021)

    Article  CAS  Google Scholar 

  25. Q. Zhong, H. Lan, M. Zhang, H. Zhu, M. Bu, Preparation of heterostructure g-C3N4/ZnO nanorods for high photocatalytic activity on different pollutants (MB, RhB, Cr(VI) and eosin). Ceram. Int. 46, 12192–12199 (2020)

    Article  CAS  Google Scholar 

  26. X. Li, M. Li, J. Yang, X. Li, T. Hu, J. Wang, Y. Sui, X. Wu, L. Kong, Synergistic effect of efficient adsorption g-C3N4/ZnO composite for photocatalytic property. J. Phys. Chem. Solids 75, 441–446 (2014)

    Article  CAS  Google Scholar 

  27. B. Zhang, M. Li, X. Wang, Y. Zhao, H. Wang, H. Song, Pompon-like structured g-C3N4/ZnO composites and their application in visible light photocatalysis. Res. Chem. Intermed. 44, 6895–6906 (2018)

    Article  CAS  Google Scholar 

  28. J.T. Schneider, D.S. Firak, R.R. Ribeiro, P. Peralta-Zamora, Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations. Phys. Chem. Chem. Phys. 22, 15723 (2020)

    Article  CAS  Google Scholar 

  29. X. Guo, J. Duan, C. Li, Z. Zhang, W. Wang, Highly efficient Z-scheme g-C3N4/ZnO photocatalysts constructed by co-melting-recrystallizing mixed precursors for wastewater treatment. J. Mater. Sci. 55, 2018–2031 (2020)

    Article  CAS  Google Scholar 

  30. N. Li, Y. Tian, J. Zhao, J. Zhang, W. Zuo, L. Kong, H. Cui, Z-scheme 2D/3D g-C3N4@ZnO with enhanced photocatalytic activity for cephalexin oxidation under solar light. Chem. Eng. J. 352, 412–422 (2018)

    Article  CAS  Google Scholar 

  31. N. Nie, L. Zhang, J. Fu, B. Cheng, J. Yu, Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance. Appl. Surf. Sci. 441, 12–22 (2018)

    Article  CAS  Google Scholar 

  32. N.T.T. Truc, D.S. Duc, D.V. Thuan, T. Al-Tahtamouni, T.D. Pham, N.T. Hanh, D.T. Tran, M.V. Nguyen, N.M. Dang, N.T.P.L. Chi, V.N. Nguyen, The advanced photocatalytic degradation of atrazine by direct Z-scheme Cu doped ZnO/g-C3N4. Appl. Surf. Sci. 489, 875–882 (2019)

    Article  CAS  Google Scholar 

  33. J. Sun, Y. Yuan, L. Qiu, X. Jiang, A. Xie, Y. Shen, J. Zhu, Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light. Dalton Trans. 41, 6756–6763 (2012)

    Article  CAS  Google Scholar 

  34. D.R. Paul, S. Gautam, P. Panchal, S.P. Nehra, P. Choudhary, A. Sharma, ZnO-modified g-C3N4: a potential photocatalyst for environmental application. ACS Omega 5, 3828–3838 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the Department of Science and Technology, Government of India for funding support through DST-INSPIRE Faculty Award (DST/INSPIRE/04/2016/002227). Authors extend their sincere thanks to Researchers Supporting Project (Ref. RSP-2021/78), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

KG, YNT, MS: Conceptualization; KG, YNT, RMP, MdSH: Data curation; KG, YNT, RMP, MdSH: Formal analysis; MS, AA: Funding acquisition;  KG, YNT: Investigation; MS: Supervision; KG, YNT: Writing-original draft;  MS, AA: Writing-review and editing.

Corresponding author

Correspondence to M. Sakar.

Ethics declarations

Conflict of interest

Authors do not have any potential conflicts of interest to declare (both financial and non-financial). The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This research does not include any human participants and/or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayathri, K., Teja, Y.N., Prakash, R.M. et al. In situ-grown ZnO particles on g-C3N4 layers: a direct Z-scheme-driven photocatalyst for the degradation of dye and pharmaceutical pollutants under solar irradiation. J Mater Sci: Mater Electron 33, 9774–9784 (2022). https://doi.org/10.1007/s10854-022-07825-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07825-6

Navigation