Skip to main content
Log in

Flowerlike Bi2O2(OH)NO3/BiOCl nanocomposite with enhance photodegradation activity under simulated sunlight irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A unique flowerlike Bi2O2(OH)NO3/BiOCl nanocomposite was successfully synthesized and characterized by XRD, SEM, TEM, N2 adsorption–desorption and XPS. The Bi2O2(OH)NO3/BiOCl nanocomposites display improved photocatalytic activity than pure Bi2O2(OH)NO3 and BiOCl. Spectroscopic results and photoelectrochemical analysis revealed that the improved photocatalytic activity is mainly attributed to the enhanced photogenerated electron–hole separation in Bi2O2(OH)NO3/BiOCl heterostructure and synergistic effect between two component. Among them, 9% BON-BOC exhibits the best photodegradation activity of dye solution with 92% of degradation in 100 min. In addition, the photocatalytic mechanism were also investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C.T. Wang, W.L. Chou, Y.M. Kuo, F.L. Chang, Paired removal of color and COD from textile dyeing wastewater by simultaneous anodic and indirect cathodic oxidation. J. Hazard. Mater. 169, 16–22 (2009)

    Article  CAS  Google Scholar 

  2. X.C. Meng, Z.S. Zhang, Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches. J. Mol. Catal. A: Chem. 423, 533–549 (2016)

    Article  CAS  Google Scholar 

  3. Q.Z. Wang, J. Hui, Y.J. Huang, Y.M. Ding, Y.X. Cai, S.Q. Yin, Z.M. Li, B.T. Su, The preparation of BiOCl photocatalyst and its performance of photodegradation on dyes. Mater. Sci. Semicond. Process. 17, 87–93 (2014)

    Article  CAS  Google Scholar 

  4. D.M. Ma, H.H. Liu, J. Huang, J.B. Zhong, J.Z. Li, D. Wang, Improved photocatalytic performance of flower-like BiOBr/BiOCl heterojunctions prepared by an ionic liquid assisted one-step hydrothermal method. Mater. Lett. 238, 147–150 (2019)

    Article  CAS  Google Scholar 

  5. J.J. Xu, J.W. Yang, P. Zhang, Q. Yuan, Y.H. Zhu, Y. Wang, M.M. Wu, Z.M. Wang, M.D. Chen, Preparation of 2D square-like Bi2S3-BiOCl heterostructures with enhanced visible light-driven photocatalytic performance for dye pollutant degradation. Water. Sci. Eng. 10, 334–339 (2017)

    Article  Google Scholar 

  6. H.H. Yang, C. Yang, J. Huang, Z. Deng, J.B. Zhong, J.Z. Li, R. Duan, Carbon black decorated BiOCl with largely enhanced photocatalytic activity toward removal of RhB. Solid State Sci. 97, 105989 (2019)

    Article  Google Scholar 

  7. Q.Z. Wang, J. Hui, J.J. Li, Y.X. Cai, S.Q. Yin, F.P. Wang, B.T. Su, Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation. Appl. Surf. Sci. 283, 577–583 (2013)

    Article  CAS  Google Scholar 

  8. X.L. Hu, Z.M. Sun, J.Y. Song, G.X. Zhang, C.Q. Li, S.L. Zheng, Synthesis of novel ternary heterogeneous BiOCl/TiO2/sepiolite composite with enhanced visible-light-induced photocatalytic activity towards tetracycline. J. Colloid. Interface Sci. 533, 238–250 (2019)

    Article  CAS  Google Scholar 

  9. C.H. Deng, H.M. Hu, H. Yu, J.J. Xu, M.Y. Ci, Y.P. Wu, L.L. Wang, S.N. Zhu, Facile microwave-assisted fabrication of CdS/BiOCl nanostructures with enhanced visible-light-driven photocatalytic activity. J. Mater. Sci. 56, 2994–3010 (2021)

    Article  CAS  Google Scholar 

  10. C.L. Yu, H.B. He, X.Q. Liu, J.L. Zeng, Z. Liu, Novel SiO2 nanoparticle-decorated BiOCl nanosheets exhibiting high photocatalytic performances for the removal of organic pollutants. Chin. J. Catal. 40, 1212–1221 (2019)

    Article  CAS  Google Scholar 

  11. L.W. Shan, J.J. Bi, Y.T. Liu, Roles of BiOCl(001) in face-to-faced BiOI(010)/BiOCl(001) heterojunction. J. Nanopart. Res. 20, 170–185 (2018)

    Article  Google Scholar 

  12. F.T. Li, Y.L. Li, M.J. Chai, B. Li, Y.J. Hao, X.J. Wang, R.H. Liu, One-step construction of 001 facets-exposed BiOCl hybridized with Al2O3 for enhanced molecular oxygen activation. Catal. Sci. Technol. 6, 7985–7995 (2016)

    Article  CAS  Google Scholar 

  13. Y. Zhang, Q. Shao, H.Y. Jiang, L.R. Liu, M.Y. Wu, J. Lin, J.X. Zhang, S.D. Wu, M.Y. Dong, Z.H. Guo, One-step co-precipitation synthesis of novel BiOCl/CeO2 composites with enhanced photodegradation of rhodamine B. Inorg. Chem. Front. 7, 1345–1361 (2020)

    Article  CAS  Google Scholar 

  14. Z.K. Zeng, K. Li, T. Yuan, Y.J. Liang, J. Yang, G. Yang, K. Wang, Z.R. Xiong, Facile synthesis of BiOCl/g-C3N4 heterojunction via in situ hydrolysis of Bi nanospheres: a high-efficiency visible-light-driven photocatalyst. J. Mater. Sci.: Mater. Electron. 32, 9972–9989 (2021)

    CAS  Google Scholar 

  15. Y.W. Cui, J.L. Ma, M.J. Wu, J.Z. Wu, J. Zhang, Y.F. Xu, Q. Liu, G.G. Qian, Facet-dependent topo-heterostructure formed by BiOCl and ZnCr-LDH and its enhanced visible-light photocatalytic activity. Sep. Purif. Technol. 254, 117635 (2021)

    Article  CAS  Google Scholar 

  16. H.W. Huang, Y. He, X.W. Li, M. Li, C. Zeng, F. Dong, X. Du, T.R. Zhang, Y.H. Zhang, Bi2O2(OH)(NO3) as a desirable [Bi2O2] 2+ layered photocatalyst: strong intrinsic polarity, rational band structure and 001 active facets co-beneficial for robust photooxidation capability. J. Mater. Chem. A 3, 24547–24556 (2015)

    Article  CAS  Google Scholar 

  17. L. Hao, H.W. Huang, Y.X. Guo, Y.H. Zhang, Multifunctional Bi2O2(OH)(NO3) nanosheets with 001 active exposing facets: efficient photocatalysis, dye-sensitization, and piezoelectric-catalysis. ACS Sustain. Chem. Eng. 6, 1848–1862 (2018)

    Article  CAS  Google Scholar 

  18. X.Y. Liu, R.T. Guo, H. Qin, Z.Y. Wang, X. Shi, W.G. Pan, J.Y. Tang, P.Y. Jia, Y.F. Miao, J.W. Gu, Fabrication of Bi2O2(OH)(NO3) /g-C3N4 nanocomposites for efficient CO2 photocatalytic reduction. Colloids Surf. A: Physicochem. Eng. Asp. 580, 123782 (2019)

    Article  CAS  Google Scholar 

  19. M.Y. Zhou, H.X. Shi, H.W. Huang, F. Chen, Y.T. Li, K. Wang, Y.H. Zhang, Bi2O2(OH)NO3/AgI heterojunction with enhanced UV and visible-light responsive photocatalytic activity and mechanism investigation. Mater. Res. Bull. 108, 120–129 (2018)

    Article  CAS  Google Scholar 

  20. G.S. Liu, S.J. You, H. Huang, M. Ma, N.Q. Ren, A novel Z-scheme BiPO4-Bi2O2(OH)(NO3) heterojunction structured hybrid for synergistic photocatalysis. Chemosphere 171, 702–709 (2017)

    Article  CAS  Google Scholar 

  21. T.P. Hu, Y. Yang, K. Dai, J.F. Zhang, C.G. Liang, A novel Z-scheme Bi2MoO6/BiOBr photocatalyst for enhanced photocatalytic activity under visible light irradiation. Appl. Surf. Sci 456, 473–481 (2018)

    Article  CAS  Google Scholar 

  22. F. Chang, F.Y. Wu, W.J. Yan, M.Z. Jiao, J.J. Zheng, B.Q. Deng, X.F. Hu, Oxygen-rich bismuth oxychloride Bi12O17Cl2 materials: construction, characterization, and sonocatalytic degradation performance. Ultrason. Sonochem. 50, 105–113 (2019)

    Article  CAS  Google Scholar 

  23. C. Liu, J.L. Zhou, J.Z. Su, L.J. Guo, Turning the unwanted surface bismuth enrichment to favourable BiVO4/BiOCl heterojunction for enhanced photoelectrochemical performance. Appl. Catal. B: Environ. 241, 506–513 (2019)

    Article  CAS  Google Scholar 

  24. J.C. Gao, Y. Gao, Z.Y. Sui, Z.B. Dong, S.Y. Wang, D.L. Zou, Hydrothermal synthesis of BiOBr/FeWO4 composite photocatalysts and their photocatalytic degradation of doxycycline. J. Alloy. Compd. 732, 43–51 (2018)

    Article  CAS  Google Scholar 

  25. Y.Q. Liu, Y. Zhou, Q.J. Tang, Q. Li, S. Chen, Z.X. Sun, H.Q. Wang, A direct Z-scheme Bi2WO6/NH2-UiO-66 nanocomposite as an efficient visible-light-driven photocatalyst for NO removal. RSC Adv. 10, 1757–1768 (2020)

    Article  CAS  Google Scholar 

  26. D.M. Ma, J.B. Zhong, J.Z. Li, L. Wang, R.F. Peng, Enhanced photocatalytic activity of BiOCl by C70 modification and mechanism insight. Appl. Surf. Sci. 443, 497–505 (2018)

    Article  CAS  Google Scholar 

  27. C.V. Reddy, B. Babu, J. Shim, Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite. J. Phys. Chem. Solids 112, 20–28 (2018)

    Article  CAS  Google Scholar 

  28. Y. Xiao, Z.Y. Peng, S. Zhang, Y.H. Jiang, X. Jing, X.Y. Yang, J.M. Zhang, L. Ni, Z-scheme CdIn2S4/BiOCl nanosheet face-to-face heterostructure: in-situ synthesis and enhanced interfacial charge transfer for high-efficient photocatalytic performance. J. Mater. Sci. 54, 9573–9590 (2019)

    Article  CAS  Google Scholar 

  29. T. Ahmad, P. Phul, P. Alam, I.H. Lone, M. Shahazad, J. Ahmed, T. Ahamad, S.M. Alshehri, Dielectric, optical and enhanced photocatalytic properties of CuCrO2 nanoparticles. RSC Adv. 7, 27549–27557 (2017)

    Article  CAS  Google Scholar 

  30. R. Liang, F.F. Jing, L.J. Shen, N. Qin, L. Wu, MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. J. Hazard. Mater. 287, 364–372 (2015)

    Article  CAS  Google Scholar 

  31. X. Zhong, W.T. Wu, H.N. Jie, W.Y. Tang, D.Y. Chen, T. Ruan, H.P. Bai, Degradation of norfloxacin by copper-doped Bi2WO6-induced sulfate radical-based visible light-Fenton reaction. RSC Adv. 10, 38024–38032 (2020)

    Article  CAS  Google Scholar 

  32. Z.Z. Zhang, Z.W. Pan, Y.F. Guo, P.K. Wong, X.J. Zhou, R.B. Bai, In-situ growth of all-solid Z-scheme heterojunction photocatalyst of Bi7O9I3/g-C3N4 and high efficient degradation of antibiotic under visible light. Appl. Catal. B: Environ. 261, 118212 (2020)

    Article  CAS  Google Scholar 

  33. K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B: Environ. 68, 125–129 (2006)

    Article  CAS  Google Scholar 

  34. X.J. Wen, Q. Lu, X.X. Lv, J. Sun, J. Guo, Z.H. Fei, C.G. Niu, Photocatalytic degradation of sulfamethazine using a direct Z-Scheme AgI/ Bi4V2O11 photocatalyst: Mineralization activity, degradation pathways and promoted charge separation mechanism. J. Hazard. Mater. 385, 121508 (2020)

    Article  CAS  Google Scholar 

  35. Y.H. Chi, W. Wang, Q.Z. Zhang, H.Y. Yu, M.N. Liu, S.Q. Ni, B.Y. Gao, S.P. Xu, Evaluation of practical application potential of a photocatalyst: ultimate apparent photocatalytic activity. Chemosphere 285, 131323 (2021)

    Article  CAS  Google Scholar 

  36. R.B. Anjaneyulu, B.S. Mohan, G.P. Naidu, R. Muralikrishn, ZrO2/Fe2O3/RGO nanocomposite: good photocatalyst for dyes degradation. Phys. E 108, 105–111 (2019)

    Article  CAS  Google Scholar 

  37. A. Akhundi, E.I. García-López, G. Marcì, A. Habibi-Yangjeh, L. Palmisano, Comparison between preparative methodologies of nanostructured carbon nitride and their use as selective photocatalysts in water suspension. Res. Chem. Intermed. 43, 5153–5168 (2017)

    Article  CAS  Google Scholar 

  38. X.M. Bing, X.Y. Jian, J.H. Chu, J. Li, C.Y. Guo, Hierarchically porous BiOBr/ZnAl1.8Fe0.2O4 and its excellent adsorption and photocatalysis activity. Mater. Res. Bull. 110, 1–12 (2019)

    Article  CAS  Google Scholar 

  39. S.A. Xing, G.J. Zhao, J. Wang, Y. Xu, Z.X. Ma, X.S. Li, W.G. Yang, G.P. Liu, J.H. Yang, Band alignment of two-dimensional h-BN/MoS2 van der Waals heterojunction measured by X-ray photoelectron spectroscopy. J. Alloy. Compd. 834, 155108 (2020)

    Article  CAS  Google Scholar 

  40. N.X. Qian, X. Zhang, X. Sun, M. Wang, X.Y. Sun, C. Liu, R. Rao, Y.Q. Ma, A facile method to tune the crystal lattice/morphology/electronic state/photocatalytic performance of BiOCl. J. Alloy. Compd. 815, 152490 (2020)

    Article  CAS  Google Scholar 

  41. J. Shang, H.G. Chen, T.Z. Chen, X.W. Wang, G. Feng, M.W. Zhu, Y.X. Yang, X.S. Jia, Photocatalytic degradation of rhodamine B and phenol over BiFeO3/BiOCl nanocomposite. Appl. Phys. A: Mater. 125, 133 (2019)

    Article  Google Scholar 

  42. J.L. Hu, W.J. Fan, W.Q. Ye, C.J. Huang, X.Q. Qiu, Insights into the photosensitivity activity of BiOCl under visible light irradiation. Appl. Catal. B: Environ. 158–159, 182–189 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (21406058, 51775183), the Hunan Provincial Natural Science Fund of China (2018JJ2125, 2021JJ30237, 2021JJ30259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wu, J., Shi, L. et al. Flowerlike Bi2O2(OH)NO3/BiOCl nanocomposite with enhance photodegradation activity under simulated sunlight irradiation. J Mater Sci: Mater Electron 33, 270–282 (2022). https://doi.org/10.1007/s10854-021-07291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07291-6

Navigation