Skip to main content

Advertisement

Log in

Electrical and thermoelectric properties of surfactant-assisted calcium cobalt oxide nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We are in need of clean, cost-effective and renewable energy sources because of the energy crisis and global warming. Thermoelectric technology provides the solution for this problem with abundant advantages like less toxicity, solid state operation, maintenance free operation, no moving parts, no chemical reactions and absence of global warming gases. Thermoelectric devices convert irrecoverable thermal energy into electricity via Seebeck effect and vice versa via Peltier effect. The conversion efficiency is measured by a dimensionless figure of merit. Perovskite mesoporous calcium cobalt oxide nanoparticles are promising thermoelectric oxides at elevated temperature with monoclinic structure have been synthesized by sol gel hydrothermal method. The systematic studies revealed the impact of poly vinyl pyrrolidone as a capping agent on the particle size of the nanoparticles. The prepared nanoparticles were characterized by thermal analysis, X-ray diffraction, Raman analysis, scanning electron microscope with energy dispersive analysis, transmission electron microscopy with selected area diffraction and thermoelectric studies. Pure and poly crystalline calcium cobalt oxide nanoparticles were obtained and its average particle size were calculated by the Scherrer formula. Raman analysis showed the vibrational modes at low frequencies related to calcium and cobalt whereas modes observed at higher frequencies are associated with lower atomic mass element oxygen. The particle size increases with increasing the concentration of the capping agent but when the concentration overheads the level then the particles get agglomerated. The morphology, size and shape of the nanoparticles are measured by HRTEM with SAED. Thermoelectric properties were measured for the capping agent optimized sample between ambient temperature and 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.N. Mallika, A.R. Reddy, K.V. Reddy, Annealing effects on the structural and optical properties of ZnO nanoparticles with PVA and CA as chelating agents. J. Adv. Ceram. 4(2), 123–129 (2015). https://doi.org/10.1007/s40145-015-0142-4

    Article  CAS  Google Scholar 

  2. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008). https://doi.org/10.1038/nmat2090

    Article  CAS  Google Scholar 

  3. I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B (1997). https://doi.org/10.1103/physrevb.56.r12685

    Article  Google Scholar 

  4. A. Seron, F. Delorme, Synthesis of layered double hydroxides (LDHs) with varying pH: a valuable contribution to the study of Mg/AlLDH formation mechanism. J. Phys. Chem. Solids 69(5–6), 1088–1090 (2008). https://doi.org/10.1016/j.jpcs.2007.10.054

    Article  CAS  Google Scholar 

  5. X.H. Zhang, J.C. Li, Y.L. Du, F.N. Wang, H.Z. Liu, Y.H. Zhu, L.M. Mei, Thermoelectric properties of A-site substituted lanthanide Ca0.75R0.25MnO3. J. Alloy. Compd. 634, 1–5 (2015). https://doi.org/10.1016/j.jallcom.2015.02.074

    Article  CAS  Google Scholar 

  6. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, J. Hejtmanek, Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B 62(1), 166–175 (2000). https://doi.org/10.1103/physrevb.62.166

    Article  CAS  Google Scholar 

  7. J. Spooren, R.I. Walton, Hydrothermal synthesis of the perovskite manganites Pr0.5Sr0.5MnO3 and Nd0.5Sr0.5MnO3 and alkaliearth manganese oxides CaMn2O4, 4H-SrMnO3, and 2H-BaMnO3, Hydrothermal synthesis of the perovskite manganites Pr0.5Sr0.5MnO3 and Nd0.5Sr0.5MnO3 and alkali-earth manganese oxides CaMn2O4, 4H-SrMnO3, and 2H-BaMnO3. J. Solid State Chem. 178(5), 1683–1691 (2005). https://doi.org/10.1016/j.jssc.2005.03.006

    Article  CAS  Google Scholar 

  8. M. Yoshimura, Importance of soft processing of advanced materials for sustainable society. Proc. Eng. 171, 40–52 (2017). https://doi.org/10.1016/j.proeng.2017.01.308

    Article  Google Scholar 

  9. L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, W.L. Zhou, L.M. Wang, Synthesis and characteristics of Fe3+-doped SnO2 nanoparticles via sol– gel-annealing or sol–gel-hydrothermal route. J. Alloys Compd. 454, 261–267 (2008). https://doi.org/10.1016/j.jallcom.2006.12.014.1

    Article  CAS  Google Scholar 

  10. D. Kenfaui, B. Lenoir, D. Chateigner, B. Ouladdiaf, M. Gomina, J.G. Noudem, Development of multilayer textured Ca3Co4O9 materials for thermoelectric generators: influence of the anisotropy on the transport properties. J. Eur. Ceram. Soc. 32(10), 2405–2414 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.03.022

    Article  CAS  Google Scholar 

  11. J. Xu, C. Wei, K. Jia, Thermoelectric performance of textured Ca3−xYbxCo4O9−δ ceramics. J. Alloy. Compd. 500(2), 227–230 (2010). https://doi.org/10.1016/j.jallcom.2010.04.014

    Article  CAS  Google Scholar 

  12. P. Veluswamy, S. Sathiyamoorthy, F. Khan, A. Ghosh, M. Abhijit, Y. Hayakawa, H. Ikeda, Incorporation of ZnO and their composite nanostructured material into a cotton fabric platform for wearable device applications. Carbohyd. Polym. 157, 1801–1808 (2017). https://doi.org/10.1016/j.carbpol.2016.11.065

    Article  CAS  Google Scholar 

  13. P. Veluswamy, S. Sathiyamoorthy, K.H. Chowdary, O. Muthusamy, K. Krishnamoorthy, T. Takeuchi, H. Ikeda, Morphology dependent thermal conductivity of ZnO nanostructures prepared via a green approach. J. Alloy. Compd. 695, 888–894 (2017). https://doi.org/10.1016/j.jallcom.2016.10.196

    Article  CAS  Google Scholar 

  14. J. Pei, G. Chen, N. Zhou, D.Q. Lu, F. Xiao, High temperature transport and thermoelectric properties of Ca3−xErxCo4O9+δ. Phys. B 406(3), 571–574 (2011). https://doi.org/10.1016/j.physb.2010.11.043

    Article  CAS  Google Scholar 

  15. J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8(7), 471–473 (2013). https://doi.org/10.1038/nnano.2013.129

    Article  CAS  Google Scholar 

  16. N. Prasoetsopha, S. Pinitsoontorn, T. Kamwanna, V. Amornkitbamrung, K. Kurosaki, Y. Ohishi, S. Yamanaka, The effect of Cr substitution on the structure and properties of misfit-layered Ca3Co4−xCrxO9+δ thermoelectric oxides. J. Alloys Compd. 588, 199–205 (2014). https://doi.org/10.1016/j.jallcom.2013.11.034

    Article  CAS  Google Scholar 

  17. Y. Wang, H.J. Fan, Improved thermoelectric properties of La1−xSrxCoO3 nanowires. J. Phys. Chem. C 114(32), 13947–13953 (2010). https://doi.org/10.1021/jp105367r

    Article  CAS  Google Scholar 

  18. C. Ou, A.L. Sangle, T. Chalklen, Q. Jing, V. Narayan, S. Kar-Narayan, Enhanced thermoelectric properties of flexible aerosol-jet printed carbon nanotube-based nanocomposites. APL Mater. 6(9), 096101 (2018). https://doi.org/10.1063/1.5043547

    Article  CAS  Google Scholar 

  19. F. Deganello, G. Marcì, G. Deganello, Citrate–nitrateauto-combustion synthesis of perovskite-type nanopowders: a systematic approach. J. Eur. Ceram. Soc. 29(3), 439–450 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.06.012

    Article  CAS  Google Scholar 

  20. L. Predoana, A. Jitianu, S. Preda, B. Malic, M. Zaharescu, Thermal behavior of Li–Co-citric acid water-based gels as precursors for LiCoO2 powders. J. Therm. Anal. Calorim. 119(1), 145–153 (2014). https://doi.org/10.1007/s10973-014-4178-4

    Article  CAS  Google Scholar 

  21. F. Deganello, G. Marcì, G. Deganello, Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: a systematic approach. J. Eur. Ceram. Soc. 29, 439–450 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.06.012

    Article  CAS  Google Scholar 

  22. A. Mali, A. Ataie, Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol–gel combustion method. Ceram. Int. 30, 1979–1983 (2004). https://doi.org/10.1016/j.ceramint.2003.12.178

    Article  CAS  Google Scholar 

  23. M. Khazaei, A. Malekzadeh, F. Amini, Y. Mortazavi, A. Khodadadi, Effect of citric acid concentration as emulsifier on perovskite phase formation of nano-sized SrMnO3 and SrCoO3 samples. Cryst. Res. Technol. 45(10), 1064–1068 (2010). https://doi.org/10.1002/crat.201000258

    Article  CAS  Google Scholar 

  24. S.V. Jadhav, D.S. Nikam, V.M. Khot, N.D. Thorat, M.R. Predator, R.S. Ningthoujam, A.B. Salunkhe, S.H. Pawar, Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia. New J. Chem. 37, 3121–3130 (2013). https://doi.org/10.1039/C3NJ00554B

    Article  CAS  Google Scholar 

  25. T. Liu, J. Liu, Q. Liu, Y. Sun, X. Jing, H. Zhang, J. Wang, Three-dimensional hierarchical Co3O4 nano/micro-architecture: synthesis and ethanol sensing properties. Cryst. Eng. Comm. (2019). https://doi.org/10.1039/C9CE01086F

    Article  Google Scholar 

  26. X. Liu, K. Li, C. Wu, Z. Li, B. Wu, X. Duan, C. Pei, Bio mimetic assembly of multilevel hydroxyl apatite using bacterial cellulose hydrogel as a reactor. Cryst. Eng. Commun. (2019). https://doi.org/10.1039/c9ce01086f

    Article  Google Scholar 

  27. C.K. Latha, M. Raghasudha, Y. Aparna, M.R. Ravinder, D. Shridhar, Effect of capping agent on the morphology, size and optical properties of In2O3 nanoparticles. Mater. Res. 20(1), 256–263 (2017). https://doi.org/10.1590/1980-5373-mr-2016-0292

    Article  CAS  Google Scholar 

  28. C.M. Phan, H.M. Nguyen, Role of capping agent in wet synthesis of nanoparticles. J. Phys. Chem. A 121(17), 3213–3219 (2017). https://doi.org/10.1021/acs.jpca.7b02186

    Article  CAS  Google Scholar 

  29. Y. Wang, L. Xu, Y. Sui, X. Wang, J. Cheng, W. Su, Enhanced electron correlation in rare-earth doped Ca3Co4O9. Appl. Phys. Lett. 97(6), 062114 (2010). https://doi.org/10.1063/1.3479923

    Article  CAS  Google Scholar 

  30. Y. Liu, L. Zhang, S.E. Shirsath, J. Zheng, Y. Liu, C. Ulrich, S. Li, Manipulation of charge carrier concentration and phonon scattering via spin-entropy and size effects: investigation of thermoelectric transport properties in La-doped Ca3Co4O9. J. Alloy. Compd. 801, 60–69 (2019). https://doi.org/10.1016/j.jallcom.2019.06.113

    Article  CAS  Google Scholar 

  31. M. Gotić, S. Musić, Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. J. Mol. Struct. 834–836, 445–453 (2007). https://doi.org/10.1016/j.molstruc.2006.10.059

    Article  CAS  Google Scholar 

  32. F.G. Cuevas, J.M. Montes, J. Cintas, P. Urban, Electrical conductivity and porosity relationship in metal foams. J. Porous Mater. 16(6), 675–681 (2008). https://doi.org/10.1007/s10934-008-9248-1

    Article  CAS  Google Scholar 

  33. F.P. Zhang, Q.M. Lu, X. Zhang, J.X. Zhang, First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxide. J. Alloy. Compd. 509, 542–545 (2011). https://doi.org/10.1016/j.jallcom.2010.09.102

    Article  CAS  Google Scholar 

  34. B. D. Gulity, Elements of X-ray diffraction, 2nd edn, Addition –Wesley, USA (1987).

  35. M. Liu, Y. Gong, Z. Li, M. Dou, F. Wang, A green and facile hydrothermal approach for the synthesis of high-quality semi-conducting Sb2S3 thin films. Appl. Surf. Sci. 387, 790–795 (2016). https://doi.org/10.1016/j.apsusc.2016.06.126

    Article  CAS  Google Scholar 

  36. I.N. Leontyev, A.B. Kuriganova, N.G. Leontyev, L. Hennet, A. Rakhmatullin, N.V. Smirnova, V. Dmitriev, Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations. RSC Adv. 4(68), 35959–35965 (2014). https://doi.org/10.1039/c4ra04809a

    Article  CAS  Google Scholar 

  37. I.N. Qader, M.S. Omar, Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires. Bull. Mater. Sci. 40(3), 599–607 (2017). https://doi.org/10.1007/s12034-017-1393-1

    Article  CAS  Google Scholar 

  38. P. Wannasut, P. Prayoonphokkharat, N. Keawprak, P. Jaiban, A. Watcharapasorn, Effects of sintering temperature on phase, physical properties and microstructure of Ca3Co4O9 ceramic. Solid State Phenom. 283, 101–106 (2018). https://doi.org/10.4028/www.scientific.net/SSP.283.101

    Article  Google Scholar 

  39. M.S. Medina, J.C. BernardiA, M.T.E. Zenatti, A new approach to obtain calcium cobalt oxide by microwave-assisted hydrothermal synthesis. Ceram. Int. 46(2), 596–1600 (2020). https://doi.org/10.1016/j.ceramint.2019.09.130

    Article  CAS  Google Scholar 

  40. B. Fang, N. Jiang, C. Ding, Q. Du, J. Ding, Decrease of sintering temperature by CuO doping of the 0.8Pb(Mg1/3Nb2/3)O3–0.2PbTiO3 ceramics prepared by reaction-sintering method. Phys. Status Solidi. A 209, 254–261 (2012). https://doi.org/10.1002/pssa.201127486

    Article  CAS  Google Scholar 

  41. S.Y. Lee, D.H. Kim, S.C. Choi, D.J. Lee, J.Y. Choi, H.D. Kim, Porous multi-walled carbon nanotubes by using catalytic oxidation via transition metal oxide. Microporous Mesoporous Mater. 194, 46–51 (2014). https://doi.org/10.1016/j.micromeso.2014.03.040

    Article  CAS  Google Scholar 

  42. J. Lee, H. Zhu, G.G. Yadav, J. Caruthers, Y. Wu, Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles. Nano Res. 9, 996–1004 (2016). https://doi.org/10.1007/s12274-016-0987-z

    Article  CAS  Google Scholar 

  43. R. Shahbazian-Yassar, A. Amiri, Recent progress of high entropy materials for energy storage and conversion. J. Mater. Chem. A (2020). https://doi.org/10.1039/d0ta09578h

    Article  Google Scholar 

  44. M. Wolf, R. Hinterding, A. Feldhoff, High power factor vs. high zT—A review of thermoelectric materials for high-temperature application. Entropy 21(11), 1058 (2019). https://doi.org/10.3390/e21111058

    Article  CAS  Google Scholar 

  45. C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J. Maria, Entropy-stabilized oxides. Nat. Commun. 6, 1–8 (2015). https://doi.org/10.1038/ncomms9485

    Article  CAS  Google Scholar 

  46. A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger, O. Clemens, H. Hahn, Rare earth and transition metal based entropy stabilised perovskite type oxides. J. Eur. Ceram. Soc. 38(5), 2318–2327 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.058

    Article  CAS  Google Scholar 

  47. S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, A new class of high-entropy perovskite oxides. Scr. Mater. 142, 116–120 (2018). https://doi.org/10.1016/j.scriptamat.2017.08.040

    Article  CAS  Google Scholar 

  48. A. Soffientini, P. Ghigna, G. Spinolo, S. Boldrini, A. Famengo, U.A. Tamburini, Nanostructured calcium cobalt oxide Ca3Co4O9 as thermoelectric material. Effect of nanostructure on local coordination, Co charge state and thermoelectric properties. J. Phys. Chem. Solids 143, 109474 (2020). https://doi.org/10.1016/j.jpcs.2020.109474

    Article  CAS  Google Scholar 

  49. S. Bresch, B. Mieller, C. Selleng et al., Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca3Co4O9. J. Electro Ceram. 40, 225–234 (2018). https://doi.org/10.1007/s10832-018-0124-3

    Article  CAS  Google Scholar 

  50. Y. Liu, Y. Lin, Z. Shi, C.W. Nan, Z. Shen, Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by spark plasma sintering. J. Am. Ceram. Soc. 88(5), 1337–1340 (2005). https://doi.org/10.1111/j.1551-2916.2005.00284.x

    Article  CAS  Google Scholar 

  51. A. Klyndyuk, E. Chizhova, I. Matsukevich, E. Tugova, Thermoelectric properties of inhomogeneous ceramics based on the layered calcium cobaltate. Univers. J. Mater. Sci. 7(4), 43–53 (2019). https://doi.org/10.13189/ujms.2019.070401

    Article  Google Scholar 

  52. M. Bittner, L. Helmich, F. Nietschke, B. Geppert, O. Oeckler, A. Feldhoff, Porous Ca3Co4O9 with enhanced thermoelectric properties derived from Sol-Gel synthesis. J. Eur. Ceram. Soc. 37(13), 3909–3915 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.04.059

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Dr. S. Berbeth Mary) would like to thank UGC-DAE Consortium for Scientific Research, Indore for providing the opportunity to use the research facilities at this center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Berbeth Mary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berbeth Mary, S., Leo Rajesh, A. Electrical and thermoelectric properties of surfactant-assisted calcium cobalt oxide nanoparticles. J Mater Sci: Mater Electron 33, 9289–9300 (2022). https://doi.org/10.1007/s10854-021-07285-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07285-4

Navigation