Skip to main content

Advertisement

Log in

Modifying the photocatalytic property of ZnO-based photoelectrodes by introducing MgFe2O4 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Limited light absorption and acute charge recombination on the surface of ZnO nanostructure-based photoelectrodes are the basic challenges to be grappled with for better photoelectrochemical performance. Here, in this study, we attempted to fabricate a methodical and sturdy nano-heterojunction photoelectrode by anchoring chemically stable spinel ferrite (MgFe2O4) nanoparticles (NPs) on ZnO nanorod (NR) arrays. The magnetic ferrites with a low band gap improve the ability of nano-heterojunction photoelectrodes to harvest solar energy in the visible region which further enhances the photocurrent density and photoelectrochemical conversion efficiency (PCE), respectively, when compared to pure ZnO NR. The optimized sample MFZ_3 h exhibited the most intense photocurrent density 0.54 mA/cm2 among all the samples. The band alignment at the MgFe2O4/ZnO nano-heterojunction enables significant charge transfer and separation properties. The photoelectrode composed of hybrid nanostructure provides long term durability. This work denotes an easy yet fruitful strategy of developing cost-effective earth-abundant magnetite-based heterojunction photoelectrodes that act as an effective photocatalyst for photoelectrochemical water splitting (PEC) application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.U. Ain, W. Shaheen, B. Bashir, N.M. Abdelsalem, M.F. Warsi, M.A. Khan, M. Shahid, Ceram. Int. 42, 12401–12408 (2016)

    Article  CAS  Google Scholar 

  2. M. Shahid, L. Jingling, Z. Ali, I. Shakir, M.F. Warsi, R. Parveen, M. Nadeem, Mater. Chem. Phys. 139, 566–571 (2013)

    Article  CAS  Google Scholar 

  3. Y. Shen, Y. Wu, X. Li, Q. Zhao, Y. Hou, Mater. Lett. 96, 85–88 (2013)

    Article  CAS  Google Scholar 

  4. J. Jia, X. Du, Q. Zhang, E. Liu, J. Fan, Appl. Surf. Sci. 492, 527–539 (2019)

    Article  CAS  Google Scholar 

  5. M.R. Garcia, M.M. Barba, L. Gutierrez, E.L. Velasco, J. Nanopart. Res., 21 (2019)

  6. G.M. Kumar, H.D. Cho, D.J. Lee, J.R. Kumar, C. Siva, P. Ilanchezhiyan, D.Y. Kim, T.W. Kang, Chemosphere 283, 131134 (2021)

    Article  CAS  Google Scholar 

  7. L. Zhang, Y. He, Y. Wu, T. Wu, Mater. Sci. Eng. B 176, 1497–1504 (2011)

    Article  CAS  Google Scholar 

  8. T. Yang, J. Xue, H. Tan, A. Xie, S. Li, W. Yan, Y. Shen, J. Mater. Chem. A 6, 1210–1218 (2018)

    Article  CAS  Google Scholar 

  9. Y. Lan, Z. Liu, Z. Guo, X. Li, L. Zhao, L. Zhan, M. Zhang, Dalton Trans. 47, 12181–12187 (2018)

    Article  CAS  Google Scholar 

  10. D.D. Qin, C.L. Tao, RSC Adv. 4, 16968 (2014)

    Article  CAS  Google Scholar 

  11. N.R. Su, P. Lv, M. Li, X. Zhang, M. Li, J. Niu, Mater. Lett. 122, 201–204 (2014)

    Article  CAS  Google Scholar 

  12. M. Chakraborty, D. Roy, A. Sharma, R. Thangavel, Sol. Energy Mater. Sol. Cells 200, 109975 (2019)

    Article  CAS  Google Scholar 

  13. X. Lu, X.E. Cao, Y. Liu, X. Li, M. Wang, M. Li, Int. J. Hydrog. Energy 43, 21365–21373 (2018)

    Article  Google Scholar 

  14. S.S. Kurvanov, S.Z. Urolov, Z.S. Shyamardanov, Opt. Spectrosc. 124, 198 (2018)

    Article  Google Scholar 

  15. S. Suhaimi, S. Sakrani, T. Dorji, A.K. Ismail, Nanoscale Res. Lett. 9, 256 (2014)

    Article  Google Scholar 

  16. S. Maitra, R. Mitra, T.K. Nath, Curr. Appl. Phys 27, 73–88 (2021)

    Article  Google Scholar 

  17. A.A. Tahir, K.G.U. Wijayantha, J. Photochem. Photobiol. A: Chem. 216, 119–125 (2010)

    Article  CAS  Google Scholar 

  18. J.T. Adeleke, T. Theivasanti, M. Thiruppathi, M. Swaminathan, T. Akomolafe, A.B. Alabi, Appl. Surf. Sci 455, 195–200 (2018)

    Article  CAS  Google Scholar 

  19. A. Gadallah, M.M.E. Nahass, Adv. Condens. Matter. Phys. 2013, 1 (2013)

    Article  Google Scholar 

  20. F. Khurshid, M. Jeyavelan, M.S.L. Hudson, S. Nagarajan, R. Soc, Open. Sci. 6, 181764 (2019)

    CAS  Google Scholar 

  21. S. Banerjee, S. Padhan, R. Thangavel, J. Mater. Sci. Mater. Electron (2021). https://doi.org/10.1007/s10854-021-07091-y

    Article  Google Scholar 

  22. Y. Zu, Y. Zhao, K. Xu, Y. Tong, F. Zhao, Ceram. Int. 42, 18844–18850 (2016)

    Article  CAS  Google Scholar 

  23. J. Chandradass, H. Kim, F.W.Y. Momade, J. Sol-Gel Technol. 65, 189–194 (2013)

    Article  CAS  Google Scholar 

  24. M. Shahid, L. Jingling, Z. Ali, I. Shakir, M.F. Warsi, R. Parveen, M. Nadeem, Mater. Chem. Phys. 139, 566–571 (2013)

    Article  CAS  Google Scholar 

  25. J. Fu, J. Zhang, C. Zhao, Y. Peng, X. Li, Y. He, Z. Zhang, X. Pan, N.J. Mellors, E. Xie, J. Alloys Compd. 577, 97–102 (2013)

    Article  CAS  Google Scholar 

  26. S. Maensiri, M. Sangmanee, A. Weingmoon, Nanoscale. Res. Lett. 4, 221–228 (2009)

    Article  CAS  Google Scholar 

  27. X. Yuan, H. Wang, Y. Wu, X. Chen, G. Zeng, L. Leng, C. Zhang, Catal. Commun. 61, 66–68 (2015)

    Article  Google Scholar 

  28. X. Cao, E. Johnson, M. Nath, J. Mater. Chem. A 7, 9877–9889 (2019)

    Article  CAS  Google Scholar 

  29. H.G. Kim, P.H. Borse, J.S. Jang, E.D. Jeong, O.S. Jung, Y.J. Suh, J.S. Lee, Chem. Commun. (2009). https://doi.org/10.1039/b911805e

    Article  Google Scholar 

  30. M. Li, H.Y. Bai, Z.L. Da, X. Yan, C. Chen, J.H. Jiang, W.Q. Fan, W.D. Shi, Cryst. Res. Technol. 50, 244–249 (2015)

    Article  CAS  Google Scholar 

  31. H. Huang, X. Hou, J. Xiao, L. Zhao, Q. Huang, H. Chen, Catal. Today 330, 189–194 (2019)

    Article  CAS  Google Scholar 

  32. T.F. Hou, M.A. Johar, R. Bopella, M.A. Hassan, S.J. Patil, S.W. Ryu, D.W. Lee, J. Energy Chem. 49, 262–274 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to IIT(ISM) Dhanbad for providing Research fellowship and Central Research Facilities (CRF). The authors would also like to thank SRM University for providing XRD facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thangavel.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Padhan, S. & Thangavel, R. Modifying the photocatalytic property of ZnO-based photoelectrodes by introducing MgFe2O4 nanoparticles. J Mater Sci: Mater Electron 33, 9277–9288 (2022). https://doi.org/10.1007/s10854-021-07277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07277-4

Navigation