Skip to main content

Advertisement

Log in

Outlining the beneficial photocatalytic effect of ZnS deposition in simplistically developed iron oxide nanocomposites of different stoichiometry

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles (IONPs) are promising semiconductor photocatalysts driven under visible light owing to their lower bandgap value compared with other metal-oxide nanoparticles (NPs). Owing to the lower cost, IONPs have been combined with other NPs purposefully. In this study, ZnS was deposited on the three most common types of IONPs i.e., magnetite (Fe3O4), hematite (α-Fe2O3) and Goethite (α-FeOOH), targeting improvement in their photocatalytic response. Using a simplistic wet-chemical approach i.e., pseudo-successive ionic layer adsorption and reaction (i.e., p-SILAR), resultant Fe3O4/ZnS, α-FeOOH/ZnS, and α-Fe2O3/ZnS nanocomposites were developed those exhibited higher photocatalytic efficiencies compared to corresponding IONPs. Rhodamine B (RhB) dye was used as a reference for comparative investigation of IONPs without and with ZnS deposition, which revealed that all IONPs were beneficiated with ZnS deposition, however, Fe3O4 responded the most by resulting ~ 3 times higher increase (from 19.3 to 66.5%) in the photocatalytic degradation of RhB. The final order of efficiency for nanocomposites remained as Fe3O4/ZnS > α-FeOOH/ZnS > α-Fe2O3/ZnS nanocomposites. Individual IONPs and their nanocomposites were explored using customary material characterization techniques and their photocatalytic performance was explained in accordance with the qualitative and quantitative statistics using electrochemical impedance spectroscopy (EIS) as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.-Y. Lee, S.-J. Park, TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 19, 1761–1769 (2013)

    Article  Google Scholar 

  2. U. Thi Dieu Thuy, N. Quang Liem, C.M.A. Parlett, G. Lalev, K. Wilson, Synthesis of CuS and CuS/ZnS core/shell nanocrystals for photocatalytic degradation of dyes under visible light. Catal. Commun. 44, 62–67 (2014)

    Article  Google Scholar 

  3. P. Soloman, C. Basha, V. Manickam, V. Ramamurthi, K. Koteeswaran, B. Subramanian, Electrochemical degradation of remazol black B dye effluent. Clean: Soil, Air, Water 37, 889–900 (2009)

    Google Scholar 

  4. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores. Technol. 77(3), 247–255 (2001)

    Article  Google Scholar 

  5. M. Rauf, S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151(1–3), 10–18 (2009)

    Article  Google Scholar 

  6. M. Haroun, A. Idris, Treatment of textile wastewater with an anaerobic fluidized bed reactor. Issue 1 Water Resour. Manag. New Approaches Technol. 237(1), 357–366 (2009)

    Google Scholar 

  7. A. Malathi, V. Vasanthakumar, P. Arunachalam, J. Madhavan, M.A. Ghanem, A low cost additive-free facile synthesis of BiFeWO6/BiVO4 nanocomposite with enhanced visible-light induced photocatalytic activity. J. Colloid Interface Sci. 506, 553–563 (2017)

    Article  ADS  Google Scholar 

  8. Y. Xia, Q. Li, X. Wu, K. Lv, D. Tang, M. Li, Facile synthesis of CNTs/CaIn2S4 composites with enhanced visible-light photocatalytic performance. Appl. Surf. Sci. 391, 565–571 (2017)

    Article  ADS  Google Scholar 

  9. T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014)

    Article  Google Scholar 

  10. J. Liu, D. Su, K. Wu, J.-P. Wang, High-moment magnetic nanoparticles. J. Nanopart. Res. 22(3), 1–16 (2020)

    Article  Google Scholar 

  11. T.A. Rocha-Santos, Sensors and biosensors based on magnetic nanoparticles. TrAC Trends Anal. Chem. 62, 28–36 (2014)

    Article  Google Scholar 

  12. A. Tomitaka, H. Arami, A. Ahmadivand, N. Pala, A.J. McGoron, Y. Takemura, M. Febo, M. Nair, Magneto-plasmonic nanostars for image-guided and NIR-triggered drug delivery. Sci. Rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  13. A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, N. Pala, Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors. ACS Sens. 2(9), 1359–1368 (2017)

    Article  Google Scholar 

  14. C. Santhosh, V. Velmurugan, G. Jacob, S.K. Jeong, A.N. Grace, A. Bhatnagar, Role of nanomaterials in water treatment applications: a review. Chem. Eng. J. 306, 1116–1137 (2016)

    Article  Google Scholar 

  15. R. Satheesh, K. Vignesh, A. Suganthi, M. Rajarajan, Visible light responsive photocatalytic applications of transition metal (M= Cu, Ni and Co) doped α-Fe2O3 nanoparticles. J. Environ. Chem. Eng. 2(4), 1956–1968 (2014)

    Article  Google Scholar 

  16. Y. Yan, H. Guan, S. Liu, R. Jiang, Ag3PO4/Fe2O3 composite photocatalysts with an n–n heterojunction semiconductor structure under visible-light irradiation. Ceram. Int. 40, 9095–9100 (2014)

    Article  Google Scholar 

  17. T. Rocha, E. Nascimento, A. Silva, H. Oliveira, E. Garcia, L. Oliveira, D. Monteiro, M. Rodriguez, M. Pereira, Enhanced photocatalytic hydrogen generation from water by Ni(OH)2 loaded on Ni-doped δ-FeOOH nanoparticles obtained by one-step synthesis. RSC Adv. 3, 20308 (2013)

    Article  ADS  Google Scholar 

  18. J. Theerthagiri, R.A. Senthil, A. Priya, J. Madhavan, R.J.V. Michael, M. Ashokkumar, Photocatalytic and photoelectrochemical studies of visible-light active α-Fe2O3–g-C3N4 nanocomposites. RSC Adv. 4(72), 38222–38229 (2014)

    Article  ADS  Google Scholar 

  19. D.E. Fouad, C. Zhang, H. El-Didamony, L. Yingnan, T.D. Mekuria, A.H. Shah, Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. Results Phys. 12, 1253–1261 (2019)

    Article  ADS  Google Scholar 

  20. L. Zhang, Z. Wu, L. Chen, L. Zhang, X. Li, H. Xu, H. Wang, G. Zhu, Preparation of magnetic Fe3O4/TiO2/Ag composite microspheres with enhanced photocatalytic activity. Solid State Sci. 52, 42–48 (2016)

    Article  ADS  Google Scholar 

  21. J. Kang, Q. Kuang, Z.-X. Xie, L.-S. Zheng, Fabrication of the SnO2/α-Fe2O3 hierarchical heterostructure and its enhanced photocatalytic property. J. Phys. Chem. C 115(16), 7874–7879 (2011)

    Article  Google Scholar 

  22. T. Zhu, W. Li Ong, L. Zhu, G. Wei Ho, TiO2 fibers supported β-FeOOH nanostructures as efficient visible light photocatalyst and room temperature sensor. Sci. Rep. 5(1), 10601 (2015)

    Article  ADS  Google Scholar 

  23. F. Mughal, M. Muhyuddin, M. Rashid, T. Ahmed, M.A. Akram, M.A. Basit, Multiple energy applications of quantum-dot sensitized TiO2/PbS/CdS and TiO2/CdS/PbS hierarchical nanocomposites synthesized via p-SILAR technique. Chem. Phys. Lett. 717, 69–76 (2019)

    Article  ADS  Google Scholar 

  24. F.U. Hassan, U. Ahmed, M. Muhyuddin, M. Yasir, M.N. Ashiq, M.A. Basit, Tactical modification of pseudo-SILAR process for enhanced quantum-dot deposition on TiO2 and ZnO nanoparticles for solar energy applications. Mater. Res. Bull. 120, 110588 (2019)

    Article  Google Scholar 

  25. S.S. Rao, I.K. Durga, C.V. Tulasi-Varma, D. Punnoose, S.-K. Kim, H.-J. Kim, Enhance the performance of quantum dot-sensitized solar cell by manganese-doped ZnS films as a passivation layer. Org. Electron. 26, 200–207 (2015)

    Article  Google Scholar 

  26. M. Khan, M.H. Irfan, M. Israr, N. Rehman, T.J. Park, M.A. Basit, Comparative investigation of ZnO morphologies for optimal CdS quantum-dot deposition via pseudo-SILAR method. Chem. Phys. Lett. 744, 137223 (2020)

    Article  Google Scholar 

  27. T.F. Khan, M. Muhyuddin, S.W. Husain, M.A. Basit. Synthesis and characterization of ZnO-ZnS nanoflowers for enhanced photocatalytic performance: ZnS decorated ZnO nanoflowers. In: IEEE; 2019. p. 60–65.

  28. S.J. Little, S.F. Ralph, N. Mano, J. Chen, G.G. Wallace, A novel enzymatic bioelectrode system combining a redox hydrogel with a carbon NanoWeb. Chem. Commun. 47(31), 8886–8888 (2011)

    Article  Google Scholar 

  29. S. Zarezadeh, A. Habibi-Yangjeh, M. Mousavi, BiOBr and AgBr co-modified ZnO photocatalyst: a novel nanocomposite with pnn heterojunctions for highly effective photocatalytic removal of organic contaminants. J. Photochem. Photobiol. A 379, 11–23 (2019)

    Article  Google Scholar 

  30. Z. Jing, S. Wu, Preparation and magnetic properties of spherical α-Fe2O3 nanoparticles via a non-aqueous medium. Mater. Chem. Phys. 92(2–3), 600–603 (2005)

    Article  Google Scholar 

  31. A. Malathi, P. Arunachalam, J. Madhavan, A.M. Al-Mayouf, M.A. Ghanem, Rod-on-flake α-FeOOH/BiOI nanocomposite: facile synthesis, characterization and enhanced photocatalytic performance. Colloids Surf. A 537, 435–445 (2018)

    Article  Google Scholar 

  32. M.A. Basit, M.A. Abbas, E.S. Jung, J.H. Bang, T.J. Park, Improved light absorbance and quantum-dot loading by macroporous TiO2 photoanode for PbS quantum-dot-sensitized solar cells. Mater. Chem. Phys. 196, 170–176 (2017)

    Article  Google Scholar 

  33. B. Wang, Q. Wei, S. Qu, Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods. Int. J. Electrochem. Sci. 8(3), 3786–3793 (2013)

    Google Scholar 

  34. Y.J. Zhang, L.C. Liu, L.L. Ni, B.L. Wang, A facile and low-cost synthesis of granulated blast furnace slag-based cementitious material coupled with Fe2O3 catalyst for treatment of dye wastewater. Appl. Catal. B 138, 9–16 (2013)

    Article  Google Scholar 

  35. Y. Liu, X. Liu, Y. Zhao, D.D. Dionysiou, Aligned α-FeOOH nanorods anchored on a graphene oxide-carbon nanotubes aerogel can serve as an effective Fenton-like oxidation catalyst. Appl. Catal. B 213, 74–86 (2017)

    Article  Google Scholar 

  36. F. Wang, X. Qin, Y. Meng, Z. Guo, L. Yang, Y. Ming, Hydrothermal synthesis and characterization of α-Fe2O3 nanoparticles. Mater. Sci. Semicond. Process. 16(3), 802–806 (2013)

    Article  Google Scholar 

  37. T. Fan, D. Pan, H. Zhang, Study on formation mechanism by monitoring the morphology and structure evolution of nearly monodispersed Fe3O4 submicroparticles with controlled particle sizes. Ind. Eng. Chem. Res. 50(15), 9009–9018 (2011)

    Article  Google Scholar 

  38. B.R. Devi, R. Raveendran, A. Vaidyan, Synthesis and characterization of Mn2+-doped ZnS nanoparticles. Pramana 68(4), 679–687 (2007)

    Article  ADS  Google Scholar 

  39. H. Yin, Y. Wada, T. Kitamura, S. Yanagida, Photoreductive dehalogenation of halogenated benzene derivatives using ZnS or CdS nanocrystallites as photocatalysts. Environ. Sci. Technol. 35(1), 227–231 (2001)

    Article  ADS  Google Scholar 

  40. U. Gangopadhyay, K. Kim, D. Mangalaraj, J. Yi, Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells. Appl. Surf. Sci. 230(1–4), 364–370 (2004)

    Article  ADS  Google Scholar 

  41. A. Amani-Ghadim, S. Alizadeh, F. Khodam, Z. Rezvani, Synthesis of rod-like α-FeOOH nanoparticles and its photocatalytic activity in degradation of an azo dye: Empirical kinetic model development. J. Mol. Catal. A Chem. 408, 60–68 (2015)

    Article  Google Scholar 

  42. R. Rahimi, M. Rabbani, G. Kareh. Comparative study of photocatalytic activity for three type Fe3O4 prepared in presence of different hydrolysis agent. In: The 19th International Electronic Conference on Synthetic Organic Chemistry: 2015: Multidisciplinary. Digital Publishing Institute; 2015.

  43. A.J. Deotale, R. Nandedkar, Correlation between particle size, strain and band gap of iron oxide nanoparticles. Mater. Today Proc. 3(6), 2069–2076 (2016)

    Article  Google Scholar 

  44. G. Saini, S. Kaur, S. Tripathi, C. Mahajan, H. Thanga, A. Verma, Spectroscopic studies of rhodamine 6G dispersed in polymethylcyanoacrylate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 61(4), 653–658 (2005)

    Article  ADS  Google Scholar 

  45. I. Ali, M. Muhyuddin, N. Mullani, D.W. Kim, D.H. Kim, M.A. Basit, T.J. Park, Modernized H2S-treatment of TiO2 nanoparticles: Improving quantum-dot deposition for enhanced photocatalytic performance. Curr. Appl. Phys. 20(3), 384–390 (2020)

    Article  ADS  Google Scholar 

  46. Y. Shi, H. Li, L. Wang, W. Shen, H. Chen, Novel α-Fe2O3/CdS cornlike nanorods with enhanced photocatalytic performance. ACS Appl. Mater. Interfaces 4(9), 4800–4806 (2012)

    Article  Google Scholar 

  47. P.K. Boruah, S. Szunerits, R. Boukherroub, M.R. Das, Magnetic Fe3O4@ V2O5/rGO nanocomposite as a recyclable photocatalyst for dye molecules degradation under direct sunlight irradiation. Chemosphere 191, 503–513 (2018)

    Article  ADS  Google Scholar 

  48. V.J. Babu, S. Vempati, T. Uyar, S. Ramakrishna, Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Phys. Chem. Chem. Phys. 17(5), 2960–2986 (2015)

    Article  Google Scholar 

  49. R.T. da Silva, E.S. Nascimento, A.C. da Silva, O.H. dos Santos, E.M. Garcia, L.C.A. de Oliveira, D.S. Monteiro, M. Rodriguez, M.C. Pereira, Enhanced photocatalytic hydrogen generation from water by Ni (OH)2 loaded on Ni-doped δ-FeOOH nanoparticles obtained by one-step synthesis. RSC Adv. 3(43), 20308–20314 (2013)

    Article  Google Scholar 

  50. S. Balu, K. Uma, G.-T. Pan, T.C.-K. Yang, S.K. Ramaraj, Degradation of methylene blue dye in the presence of visible light using SiO2@ α-Fe2O3 nanocomposites deposited on SnS2 flowers. Materials 11(6), 1030 (2018)

    Article  ADS  Google Scholar 

  51. H.M. Naeem, M. Muhyuddin, R. Rasheed, A. Noor, M.A. Akram, M.N. Aashiq, M.A. Basit, Simplistic wet-chemical coalescence of ZnO with Al2O3 and SnO2 for enhanced photocatalytic and electrochemical performance. J. Mater. Sci.: Mater. Electron. 30(15), 14508–14518 (2019)

    Google Scholar 

  52. M. Muhyuddin, T.F. Khan, M.A. Akram, I. Ali, T.J. Park, M.A. Basit, Significantly improved photo-and electro-chemical performance of CuS. PbS nanocomposites for dye degradation and paintable counter electrodes. J. Photochem. Photobiol. A Chem. 400, 112720 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Abdul Basit or Sajid Butt.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 3326 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, M.M., Khan, T.F., Muhyuddin, M. et al. Outlining the beneficial photocatalytic effect of ZnS deposition in simplistically developed iron oxide nanocomposites of different stoichiometry. Appl. Phys. A 127, 251 (2021). https://doi.org/10.1007/s00339-021-04401-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04401-3

Keywords

Navigation