Skip to main content
Log in

Spectroscopic and optoelectronic investigations of 3,8-bis(3,4-(ethylenedioxy)thien-2-yl)-1,10-phenanthroline

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

1,10-Phenanthroline-based luminescent materials play an important role as an excellent class of optoelectronic materials due to their remarkable and novel attributes for optoelectronic applications. There is an enormous demand of luminescent materials in many fields. The foremost objective of this paper is to synthesize fluorescent derivatives of 1,10-phenanthroline. The electronic effect of the substituents on the heteroaromatic ligand has been reviewed in solid state. These ligands were characterized by electrochemical study and spectroscopically. The value of energy band gap is estimated to be 3.0–4.5 eV for synthesized compounds. Photophysical features were analyzed through photoluminescence spectrometer, which indicates a strong impact of the substituents on the photoluminescent properties of the phenanthroline ligand. Upon excitation in ultraviolet region, intense broad band appeared in emission spectra of synthesized compounds lie in visible region which is further supported by CIE color coordinates. The detailed explanation about the geometry and frontier molecular orbitals calculation was carried out with the help of Avogadro and ORCA software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Mahata, S.K. Mondal, D.K. Singha, P. Majee, Luminescent rare-earth-based MOFs as optical sensors. Dalt. Trans. 46, 301 (2017)

    Article  CAS  Google Scholar 

  2. K.L. Wong, G.L. Law, Y.Y. Yang, W.T. Wong, A highly porous luminescent terbium-organic framework for reversible anion sensing. Adv. Mater. 18, 1051 (2006)

    Article  CAS  Google Scholar 

  3. A.M. Kaczmarek, P. Van Der Voort, Chemical sensors based on nano-sized lanthanide-grafted periodic mesoporous organosilica hybrid materials. J. Mater. Chem. C. 7, 8109 (2019)

    Article  CAS  Google Scholar 

  4. Y.X. Hu, G.W. Zhao, Y. Dong, Y.L. Lü, X. Li, D.Y. Zhang, New rhenium(I) complex with thiadiazole-annelated 1,10-phenanthroline for highly efficient phosphorescent OLEDs. Dye. Pigment. 137, 569 (2017)

    Article  CAS  Google Scholar 

  5. K. Nehra, A. Dalal, A. Hooda, S. Bhagwan, R.K. Saini, B. Mari, S. Kumar, D. Singh, Lanthanides β-diketonate complexes as energy-efficient emissive materials: A review. J. Mol. Struct. 1249, 131531 (2021)

    Article  Google Scholar 

  6. A. Kumar, R. Srivastava, S.S. Bawa, D. Singh, K. Singh, G. Chauhan, I. Singh, M.N. Kamalasanan, White organic light emitting diodes based on DCM dye sandwiched in 2-methyl-8-hydroxyquinolinolatolithium. J. Lumin. 130, 1516 (2010)

    Article  CAS  Google Scholar 

  7. X. Li, J. Gu, Z. Zhou, L. Ma, Y. Tang, J. Gao, Q. Wang, New lanthanide ternary complex system in electrospun nanofibers: Assembly, physico-chemical property and sensor application. Chem. Eng. J. 358, 67 (2019)

    Article  CAS  Google Scholar 

  8. L.S. Hung, C.H. Chen, Recent progress of molecular organic electroluminescent materials and devices. Mater. Sci. Eng. R Reports. 39, 143 (2002)

    Article  Google Scholar 

  9. H. Song, C. Fan, R. Wang, Z. Wang, S. Pu, 1,10-Phenanthroline decorated with substituent groups forming europium(III) complexes: synthesis, crystal structure, photoluminescence properties and their bioimaging in living cells. J. Coord. Chem. 73, 2311 (2020)

    Article  CAS  Google Scholar 

  10. S.I. Weissman, Intramolecular energy transfer the fluorescence of complexes of Europium. J. Chem. Phys. 10, 214 (1942)

    Article  CAS  Google Scholar 

  11. G. Yahioglu, P. Sammes, 1–10-Phenanthroline: A Versatile Ligand. Chem. Soc. Rev. 23, 327 (1972)

    Google Scholar 

  12. A. Bencini, V. Lippolis, 1,10-Phenanthroline: A versatile building block for the construction of ligands for various purposes. Coord. Chem. Rev. 254, 2096 (2010)

    Article  CAS  Google Scholar 

  13. G. Accorsi, A. Listorti, K. Yoosaf, N. Armaroli, 1,10-Phenanthrolines: Versatile building blocks for luminescent molecules, materials and metal complexes. Chem. Soc. Rev. 38, 1690 (2009)

    Article  CAS  Google Scholar 

  14. L.I. Blinova, V.A. Ilichev, R.V. Rumyantsev, G.K. Fukin, M.N. Bochkarev, Synthesis, structure, and luminescent properties of lanthanide complexes containing 1,10-phenanthroline and perfluorinated 2-mercaptobenzothiazolate ligands. Russ. Chem. Bull. 67, 1261 (2018)

    Article  CAS  Google Scholar 

  15. H. Gallardo, G. Conte, A.J. Bortoluzzi, I.H. Bechtold, A. Pereira, W.G. Quirino, C. Legnani, M. Cremona, Synthesis, structural characterization, and photo and electroluminescence of a novel terbium(III) complex: {Tris(acetylacetonate) [1,2,5]thiadiazolo[3,4- f][1,10]phenanthroline}terbium(III). Inorganica Chim. Acta. 365, 152 (2011)

    Article  CAS  Google Scholar 

  16. D. Singh, S. Bhagwan, A. Dalal, K. Nehra, R.K. Saini, K. Singh, A.P. Simantilleke, S. Kumar, I. Singh, Oxide ancillary ligand-based europium β-diketonate complexes and their enhanced luminosity. Rare Met. 40, 2873 (2021)

    Article  CAS  Google Scholar 

  17. D. Singh, S. Bhagwan, A. Dalal, K. Nehra, K. Singh, A. Simantilleke, S. Kumar, I. Singh, Intense red luminescent materials of ternary Eu3+ complexes of oxide ligands for electroluminescent display devices. Optik Stuttg 208, 164111 (2020)

    Article  CAS  Google Scholar 

  18. Y. Saitoh, T.A. Koizumi, K. Osakada, T. Yamamoto, Preparation of symmetric dibromides of 1,10-phenanthroline. Can. J. Chem. 75, 1336 (1997)

    Article  CAS  Google Scholar 

  19. D. Výprachtický, D. Kaňková, V. Pokorná, I. Kmínek, V. Dzhabarov, V. Cimrová, Novel and simple synthesis of brominated 1,10-phenanthrolines. Aust. J. Chem. 67, 915 (2014)

    Article  Google Scholar 

  20. Y. Saitoh, T. Yamamoto, Preparation and Properties of π -Conjugated Poly(1,10-phenanthroline-3,8-diyl). Chem. Lett. 24, 785 (1995)

    Article  Google Scholar 

  21. W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem. Mater. 22, 1915 (2010)

    Article  CAS  Google Scholar 

  22. S.S. Zhu, T.M. Swager, Conducting polymetallorotaxanes: Metal ion mediated enhancements in conductivity and charge localization. J. Am. Chem. Soc. 119, 12568 (1997)

    Article  CAS  Google Scholar 

  23. A. Dalal, K. Nehra, A. Hooda, D. Singh, R.S. Malik, S. Kumar, Synthesis and optoelectronic features of 5,5’-Bis(3,4-(ethylenedioxy)thien-2-yl)-2,2’-bipyridine. Optik 248, 167942 (2021)

    Article  Google Scholar 

  24. E.F. Mooney, The infrared spectra of chloro- and bromobenzene derivatives-I. Anisoles and phenetoles. Spectrochim. Acta. 19, 877 (1963)

    Article  CAS  Google Scholar 

  25. J. Coates, Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. (2006). https://doi.org/10.1002/9780470027318.a5606

    Article  Google Scholar 

  26. G. Kister, G. Cassanas, M. Vert, Morphology of poly(glycolic acid) by IR and Raman spectroscopies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 53, 1399 (1997)

    Article  Google Scholar 

  27. C.N.R. Rao, R. Venkataraghavan, T.R. Kasturi, Contribution To The Infrared Spectra Of Organosulphur Compounds. Can. J. Chem. 42, 36 (1964)

    Article  CAS  Google Scholar 

  28. X.Y. Chen, X. Yang, B.J. Holliday, Photoluminescent europium-containing inner sphere conducting metallopolymer. J. Am. Chem. Soc. 130, 1546 (2008)

    Article  CAS  Google Scholar 

  29. D. Singh, K. Nehra, R.K. Saini, A. Dalal, S. Bhagwan, K. Singh, A.P. Simantilleke, S. Kumar, Luminescence intensification of terbium(III) ion complexes with dipivaloylmethane (tmhd) and monodentate auxiliary ligands. Optik (Stuttg) 206, 164338 (2020)

    Article  CAS  Google Scholar 

  30. D. Singh, S. Bhagwan, A. Dalal, K. Nehra, R.K. Saini, K. Singh, S. Kumar, I. Singh, Synthesis and investigation of enhanced luminescence of Ln(III)-complexes containing fluorinated β-diketone and oxygen donor ancillary ligands for efficient advanced displays. J. Lumin. 223, 117255 (2020)

    Article  CAS  Google Scholar 

  31. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142 (1992)

    Article  Google Scholar 

  32. I. Gupta, S. Singh, S. Bhagwan, D. Singh, Rare earth (RE) doped phosphors and their emerging applications: A review. Ceram. Int. 47, 19282 (2021)

    Article  CAS  Google Scholar 

  33. S. Middya, A. Layek, A. Dey, P.P. Ray, Synthesis of nanocrystalline FeS2 with increased band gap for solar energy harvesting. J. Mater. Sci. Technol. 30, 770 (2014)

    Article  CAS  Google Scholar 

  34. Y. Wang, Z. Liang, J. Qin, J. Tong, P. Guo, X. Cao, J. Li, Y. Xia, An Alcohol-Soluble Polymer Electron Transport Layer Based on Perylene Diimide Derivatives for Polymer Solar Cells. IEEE J. Photovoltaics. 9, 1678 (2019)

    Article  Google Scholar 

  35. N.G. Tsierkezos, Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. J. Solution Chem. 36, 289 (2007)

    Article  CAS  Google Scholar 

  36. M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeerschd, E. Zurek, G.R. Hutchison, Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 1 (2012)

    Article  Google Scholar 

  37. F. Neese, The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012)

    Article  CAS  Google Scholar 

  38. T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica. 1, 104 (1934)

    Article  Google Scholar 

  39. R. Vijayaraj, V. Subramanian, P.K. Chattaraj, Comparison of global reactivity descriptors calculated using various density functionals: A QSAR perspective. J. Chem. Theory Comput. 5, 2744 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to show appreciation to [EMR/2016/006135] from the SERB-DST, New Delhi, for the financial assistance and also Author (KN) wish to extend special thanks to UGC-New Delhi for JRF [DEC18-114381] fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devender Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nehra, K., Dalal, A., Hooda, A. et al. Spectroscopic and optoelectronic investigations of 3,8-bis(3,4-(ethylenedioxy)thien-2-yl)-1,10-phenanthroline. J Mater Sci: Mater Electron 33, 115–125 (2022). https://doi.org/10.1007/s10854-021-07268-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07268-5

Navigation