Skip to main content
Log in

Synthesis, photophysical, electrochemical and thermal investigation of Triarylamines based on 9H-Xanthen-9-one: Yellow–green fluorescent materials

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Triarylamines containing 9 H−Xanthen −9−one core and aromatic units such as phenyl, naphthyl and p −methoxyphenyl were synthesized by employing palladium catalyzed C −N bond forming amination reaction in good yields. The photophysical studies revealed that the absorption and emission spectra are influenced by the nature of the peripheral amines. The photoemission spectra can be readily tuned in the range 483–532 nm (solution) and 525–576 nm (film) displaying green or yellow emission (film) depending on the nature of the amine segment with optical band gaps in the range 2.52–2.75 eV (film). The ionization potential and electron affinity were found to be in the range 5.332–5.686 eV and 2.705–2.776 eV, respectively. Thermal studies revealed that the synthesized compounds have good thermal stability with 5% and 10% weight loss at temperature ranging from 260–330C and 340–370C, respectively.

The triarylamines containing 9H-Xanthen-9-one were synthesized via palladium-catalyzed C−N bond forming reaction in good yields. The absorption, emission, electrochemical and thermal properties of the dyes were studied and found to be significantly influenced by the nature of the peripheral amine segments attached to the xanthone core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Chart 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. (a) Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, dos Santos D A, Bredas J L, Lögdlund M and Salaneck W R 1999 Nature 397 121; (b) Baldo M A, Thompson M E and Forrest S R 2000 Nature 403 750

  2. Anthony J E 2008 Angew. Chem. Int. Ed. 47 452

    Article  CAS  Google Scholar 

  3. (a) Imahori H, Umeyama T and Ito S 2009 Acc. Chem. Res. 42 1809; (b) Ning Z and Tian H 2009 Chem. Commun. 5483; (c) Grätzel M 2009 Acc. Chem. Res. 42 1788

  4. Tang C W and VanSlyke S A 1987 Appl. Phys. Lett. 51 913

    Article  CAS  Google Scholar 

  5. (a) Kulkarni A P, Tonzola C J, Babel A and Jenekhe S A 2004 Chem. Mater. 16 4556; (b) Jenekhe S A, Liangde Lu and Maksudul M A 2001 Macromolecule 34 7315; (c) Furuta P T, Deng L, Garon S, Thompson M E and Frechet J M J 2004 J. Am. Chem. Soc. 126 15388; (d) Kulkarni A P, Wu P-T, Kwon T W and Jenekhe S A 2005 J. Phys. Chem. B. 109 19584; (d) Chiang C-L, Wu M-F, Dai D-C, Wen Y-S, Wang J-K and Chen C-T 2005 Adv. Funct. Mater. 15 231

  6. Shirota Y J J 2000 Mat. Chem. 1 1

    Article  Google Scholar 

  7. (a) Kim S K, Yang B, Park Y I, Ma Y, Lee J-Y and Kim H-J 2009 Org. Electron. 10 822; (b) Yang B, Kim S K, Xu H, Park Y-I, Zhang H-Y, Gu C, Shen F Z, Wang C L, Liu D D, Liu X D, Hanif M, Tang S, Li W J, Li F, Shen J C, Park J W and Ma Y-G 2008 ChemPhysChem 9 2601; (c) Yu M X, Duan J P, Lin C H, Cheng C H and Tao Y T 2002 Chem. Mater. 14 3958; (d) Danel K, Huang T-H, Lin J T, Tao Y-T and Chuen C-H 2002 Chem. Mater. 14 3860

  8. (a) Noine K, Pu Y-J, Nakayama and Kido K-I 2010 Org. Electron. 11 717; (b) Kwon Y S, Lee K H, Young K G, Seo J H, Kim Y K and Yoont S S 2009 J. Nanosci. Nanotechnol. 9 7056; (c) Jiang Z, Liu Z, Yang C, Zhong C, Qin J, Yu G and Liu Y 2009 Adv. Funct. Mater. 19 987; (d) Lai M Y, Chen C H, Huang W S, Lin J T, Ke T H, Chen L Y, Tsai M H and Wu C C 2008 Angew. Chem. Int. Ed. 47 581

  9. (a) Thomas K R J, Velusamy M Lin J T, Chuen C H and Tao Y T 2005 J. Mater. Chem. 15 4453; (b) Jia W-L McCormick T, Q -D, Liu H, Fukutani M, Motala R -Y, Wang Y, Tao S and Wang 2004 J. Mater. Chem. 14 3344

  10. (a) Shen J-Y Yang X-L, Huang T-H, Lin J T, Ke T-H, Chen L-Y, Wu C-C and Yeh M-C 2007 Adv. Funct. Mater. 17 983; (b) Thomas K R J, Velusamy M, Lin J C T, Chuen C H and Tao Y T 2004 Adv. Mater. 14 387

  11. Haung T-H, Lin J T, Chen L-Y and Wu C-C 2006 Adv. Mater. 18 602

    Article  Google Scholar 

  12. (a) Grabowski Z R, Rotkiewicz K and Rettig W 2003 Chem. Rev. 103 3899; (b) Yoshihara T, Druzhinin S I and Zachariasse K A 2004 J. Am. Chem. Soc. 126 8535

  13. (a) Förster T 1969 Angew. Chem. Intl. Ed. 8 333; (b) Jenekhe S A and Osaheni J A 1994 Science 265 765

  14. (a) Hamada Y, Adachi C, Tsutsui T and Saito S J 1992 J. Appl. Phys. 31 1812; (b) Goes M, Verhoeven J W, Hofstraat H and Brunner K 2003 ChemPhysChem 4 349

  15. (a) Thomas K R J, Lin J T, Tao Y-T and Chuen C-H 2002 Chem. Mater. 14 3852; (b) Zhu W, Hu M, Yao R and Tian H 2003 J. Photochem. Photobiol. A 154 169

  16. Kelnhofer K, Knorr A, Tak Y-H and Bassler H 1997 J. Daub. Acta Polym. 48 188

    Article  CAS  Google Scholar 

  17. (a) Thomas K R J, Lin J T, Velusamy M, Tao Y-T and Chuen C-H 2004 Adv. Funct. Mater. 14 83; (b) Chiang C -L, Wu M -F, Dai D -C, Wen Y -S, Wang J -K and Chen C -T 2005 Adv. Funct. Mater. 15 231

  18. Kapoor N and Thomas K R J 2010 New J. Chem. 34 2739

    Article  CAS  Google Scholar 

  19. (a) Shen W-J, Dodda R, Wu C-C, Wu F -I, Liu T-H, Chen H-H, Chen C-H and Shu C-F 2004 Chem. Mater. 16 930; (b) Wu C C, Lin Y T, Chiang H H, Cho T Y, Chen C W, Wong K T, Liao Y L, Lee G H and Peng S M 2002 Appl. Phys. Lett. 81 577

  20. Xia Z Y, Su J H, Fan H H, Cheah K W, Tian H and Che C H 2010 J. Phys. Chem. C 114 11602

    Article  CAS  Google Scholar 

  21. Thomas K R J, Lin J T, Tao Y-T and Chuen C-H 2005 Chem. Mater. 17 1860

    Article  CAS  Google Scholar 

  22. Thomas K R J, Lin J T, Tao Y T and Chuen C -H 2004 Chem. Mater. 16 5437

    Article  CAS  Google Scholar 

  23. Horiuchi T, Kamatani J, Yamada N, Kishino K and Saitoh A Japanese Patent WO 2011/136156 A1

  24. (a) Agarawal N, Nayak P K and Periasamy N 2008 J. Chem. Sci. 120 355; (b) Shaikh A M, Sharma B K and Kamble R M 2015 Can. Chem. Trans. 3 158

  25. Katsuta S 1994 Chem. Lett. 1239

  26. Coleman M P and Mary K B 2002 J. Org. Chem. 67 7641

    Article  CAS  Google Scholar 

  27. (a) Patt P F J and Hartwig J F 1994 J. Am. Chem. Soc. 116 5969; (b) Guran A S and Buchwald S L 1994 J. Am. Chem. Soc. 116 7901; (c) Hartwig J F, Shelgy Q and Kataoka N Japanese Patent WO 02/11883 A1

  28. Faust J A and Sahyun M US Patent. 1962/3,042,674

  29. (a) Ulla H, Garudachari B, Satyanarayan M N, Umesh G and Isloor A M 2014 Optical Materials 36 704; (b) Jandke M, Stohriegl P, Berleb S, Werner E and Brutting W 1998 Macromolecules 31 6434

  30. Chiu K Y, Su T X, Li J H, Lin T-H, Liou G-S and Cheng S-H 2005 J. Electroanal. Chem. 575 95

    Article  CAS  Google Scholar 

  31. (a) Wu C, Djurovich P I and Thompson M E 2009 Adv. Func. Mater. 19 3157; (b) Koene B E, Loy D E and Thompson M E 1998 Chem. Mater. 10 2235

Download references

Acknowledgments

We thank the Micro-Analytical Laboratory, Department of Chemistry, University of Mumbai for providing Instrumentation facility. We also thank the Department of Chemistry IIT-Mumbai for providing HR-MS Spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RAJESH M KAMBLE.

Additional information

Supplementary Information

All the additional details pertaining to the characterization of the compounds 24 using FT-IR (figures S1), 1H NMR (figure S2), 13C NMR (figure S3), HRMS spectra (figure S4), UV-Vis absorption and emission spectra (figure S5), Absorption and Emission Properties of compound 2–4 in solvents of varying polarity and their CIE Coordinates as thin solid film (table S1), Emission and Excitation Spectra (figure S7), complete scan Cyclic Voltammograms (figure S8), Derivative weight loss and DTA plots (figure S9), CIE coordinates (figure S10) and Photograph of compounds in solution form (figure S11) are given in the Supporting Information. Supplementary Information is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 4.08 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SHARMA, B.K., SHAIKH, A.M. & KAMBLE, R.M. Synthesis, photophysical, electrochemical and thermal investigation of Triarylamines based on 9H-Xanthen-9-one: Yellow–green fluorescent materials. J Chem Sci 127, 2063–2071 (2015). https://doi.org/10.1007/s12039-015-0973-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0973-0

Keywords

Navigation