Skip to main content
Log in

Enhanced optoelectronics performances of multilayer Sb0.1Mo0.9Se2/SnSe2 heterostructure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present investigation, Sb0.1Mo0.9Se2 single crystals belonging to semiconductor-layered transition metal di-chalcogenides (SLTMDCs) are grown by direct vapor transport (DVT) technique in a dual-zone furnace. The surface topographic properties of exfoliated crystals are studied under an optical microscope and scanning electron microscopy (SEM). The SEM analysis reveals the presence of hexagonal particles. The direct optical energy band gap of exfoliated crystal, 1.44 eV, is obtained by UV–visible spectroscopy. The photoluminescence (PL) and Raman spectroscopy are employed to elucidate the excitonic mechanism and vibrational properties. The semiconducting behavior of exfoliated crystals is examined by high-temperature resistivity. Heterostructure devices of thin-film SnSe2/Sb0.1Mo0.9Se2 crystal are prepared to study its rectifying nature. The diode parameter such as ideality factor, saturation current, and barrier potential is evaluated by Ln IV technique. The photoconduction property of the fabricated device along the ab-plane is recorded under a polychromatic source of intensity 30 mW cm−2. The photo-detecting properties such as responsivity (149 mA W−1) and detectivity (108 Jones) are determined to evince the excellent photodetection property of detector at 800 mV and 1200 mV bias voltages, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Das, J. Appenzeller, Appl. Phys. Lett. 103(10), 103501 (2013)

    Google Scholar 

  2. J.S. Ross, P. Klement, A.M. Jones, N.J. Ghimire, J. Yan, D.G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D.H. Cobden, X. Xu, Nat. Nanotechnol. 9(4), 268–272 (2014)

    CAS  Google Scholar 

  3. K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D.C. Dillen, C.M. Corbet, E. Tutuc, ACS Nano 9(4), 4527–4532 (2015)

    CAS  Google Scholar 

  4. B.B. Nariya, A.K. Dasadia, M.K. Bhayani, A.J. Patel, A.R. Jani, Chalcogenide Lett. 6(10), 549–554 (2009)

    CAS  Google Scholar 

  5. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    CAS  Google Scholar 

  6. H. Le Nagard, C. Levy-Clement, A. Katty, R.M.A. Lieth, Mater. Res. Bull. 25, 495 (1990)

    Google Scholar 

  7. V. Lakshmi Devi, I. Jyothi, V. Rajagopal Reddy, C.-J. Choi, Open Appl. Phys. J. 5, 1–9 (2012)

    Google Scholar 

  8. R.T. Tung, Mater. Sci. Eng. R 35, 1–13 (2001)

    Google Scholar 

  9. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  10. S. Vishwanath, J. Mater. Res. 31(7), 900–910 (2014)

    Google Scholar 

  11. M. Aras, C. Kilic, S. Ciraci, J. Phys. Chem. C 122, 1547–1555 (2018)

    CAS  Google Scholar 

  12. H. Kanbur, S. Altindal, T. Mammadov, Y. Safak, J. Optoelectron. Adv. Mater. 13(6), 713–718 (2011)

    CAS  Google Scholar 

  13. Y. Munikrishna Reddy, M.K. Nagaraj, S. Sankar Naik, V. Rajagopal Reddy, J. Mod. Phys. 3, 538–545 (2012)

    Google Scholar 

  14. K.T. Lam, X. Cao, J. Guo, IEEE Electron. Device Lett. 34, 1331–1333 (2013)

    CAS  Google Scholar 

  15. A. B. Kaul, A. B, Micro- Nanotechnol. Sensors, Syst. Appl, (2013) 872502.

  16. S. Wu, S. Buckley, R.J. Schaible, L. Feng, J. Yan, D. Mandrus, F. Hatami, W. Yao, J. Vukovic, A. Majumdar, X. Xu, Nature 520(45), 69–72 (2010)

    Google Scholar 

  17. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5, 263 (2013)

    Google Scholar 

  18. Q.H. Wang, K.K. Zadeh, A. Kis, J.N. Coloman, M.S. Strano, Nat. Nanotechnol. 6, 699 (2012)

    Google Scholar 

  19. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, ACS Nano 8, 1608 (2014)

    Google Scholar 

  20. S. Kapatel, C.K. Sumesh, P. Pataniya, G.K. Solanki, K.D. Patel, Eur. Phys. J. 132, 191 (2017)

    Google Scholar 

  21. L. Britnell, R.M. Ribeerio, A. Eckmann, R. Jalil, B.D. Belle, A. Mischenko, Y.J. Kim, Autom. Thin Film Sci. 340(6138), 1311–1314 (2013)

    CAS  Google Scholar 

  22. M.A. Ghorbani et al., Phys. Rev. B 88(24), 245440 (2013)

    Google Scholar 

  23. W. Zhu, T. Low, Y.H. Lee, H. Wang, D.B. Farmer, J. Kong, F.N. Xia, P. Avouris, Nat. Commun. 5, 3087 (2014)

    Google Scholar 

  24. M. Zheng et al., ACS Nano 8(7), 7130–7137 (2014)

    Google Scholar 

  25. X. Su, W. Ju, R. Zhang, C. Guo, J. Zheng, Y. Yong, X. Li, RSC Adv. (2016). https://doi.org/10.1039/C5RA27871F

    Article  Google Scholar 

  26. K.F. Mak, J. Shan, Nat. Photon. 10, 216–226 (2016)

    CAS  Google Scholar 

  27. V. Dixit, S. Nair, J. Joy, C.U. Vyas, G.K. Solanki, K.D. Patel, V.M. Pathak, Growth Mater. Sci. Semicond. Process. 88, 1–9 (2018)

    CAS  Google Scholar 

  28. G.K. Solanki, P. Pataniya, C.K. Sumesh, K.D. Patel, V.M. Pathak, J. Cryst. Growth 02, 018 (2016)

    Google Scholar 

  29. V. Dixit, C.U. Vyas, P. Pataniya, M. Jani, V. Pathak, A.B. Patel, V.M. Pathak, K.D. Patel, G.K. Solanki, AIP Conf. Proc. 1728, 020633 (2016)

    Google Scholar 

  30. C.K. Zankat, P. Pataniya, G.K. Solanki, K.D. Patel, V.M. Pathak, N. Som, P.K. Jha, Mater. Sci. Semicond. Process. 80, 137–142 (2018)

    CAS  Google Scholar 

  31. V.V. Atuchin, S.V. Borisov, T.A. Gavrilova, K.A. Kokh, N.V. Kuratieva, N.V. Pervukhina, Particuology 26, 118–122 (2016)

    CAS  Google Scholar 

  32. P.F. Deasi, D.D. Patel, A.R. Jani, J. Cryst. Growth 390, 12–17 (2017)

    Google Scholar 

  33. S.Y. Hu, C.H. Liang, K.K. Tiong, Y.C. Lee, Y.S. Huang, J. Cryst. Growth 285, 408 (2005)

    CAS  Google Scholar 

  34. G.K. Solanki, M. Tannarana, P. Pataniya, K.D. Patel, Adv. Mater. Res. 1141, 103–106 (2016)

    Google Scholar 

  35. K.R. Patel, R.D. Vaidya, M.S. Dave, S.G. Patel, Bull. Mater. Sci. 31(4), 645–654 (2008)

    CAS  Google Scholar 

  36. M.K. Agarwal, P.D. Patel, S.K. Gupta, J. Crys, Growth 129, 559–562 (1993)

    CAS  Google Scholar 

  37. M. Bougouma, A. Batan, B. Guel, T. Segato, J.B. Legma, F. Reniers, M.P. Delplancke-Ogletree, C. Buess-Herman, T. Doneux, J. Cryst. Growth 363(2013), 122–127 (2013)

    CAS  Google Scholar 

  38. A. Patel, P. Pataniya, S. Narayan, C.K. Sumesh, V.M. Pathak, G.K. Solanki, K.D. Patel, P.K. Jha, Mater. Sci. Semicond. Process. 81, 108–112 (2018)

    CAS  Google Scholar 

  39. Y. Liu, K. Tom, X. Zhang, S. Lou, Y. Liu, J. Yao, New J. Phys. 19, 073018 (2017)

    Google Scholar 

  40. J.N. Huang, T.B. Hoang, M.H. Mikkelsen, Sci. Rep. 6, 22414 (2016)

    CAS  Google Scholar 

  41. G. Wang et al., Nat. Commun. 4, 1474 (2015)

    Google Scholar 

  42. S.V. Bhatt, M.P. Deshpande, V. Sathe, R. Rao, S.H. Chakki, J. Raman Spectrosc. 4, 971–979 (2014)

    Google Scholar 

  43. V. Dixit, P. Chauhan, A.B. Patel, S. Narayan, P.K. Jha, G.K. Solanki, K.D. Patel, V.M. Pathak, Mater. Lett. X 2, 100013 (2019)

    CAS  Google Scholar 

  44. S.K. Cheung, N.W. Cheung, Appl Phys Lett 49, 85–87 (1993)

    Google Scholar 

  45. J.H. Werner, H.H. Guttler, J. Appl. Phys. 69, 1522–1533 (1991)

    CAS  Google Scholar 

  46. P. Pataniya, G.K. Solanki, C.K. Zankat, M. Tannarana, C.K. Sumesh, K.D. Patel, V.M. Pathak, Pramana J. Phys. 91, 41 (2018)

    Google Scholar 

  47. A.J. Mathai, K.D. Patel, Cryst. Res. Technol. 45(7), 717–724 (2010)

    CAS  Google Scholar 

  48. C.K. Sumesh, K.D. Patel, V.M. Pathak, R. Srivastava, Chin. Phys. Lett. 28(8), 087201–087204 (2011)

    Google Scholar 

  49. C.K. Zankat, P. Pataniya, G.K. Solanki, K.D. Patel, V.M. Pathak, Mater. Lett. 221, 35–37 (2018)

    CAS  Google Scholar 

  50. P. Pataniya, G.K. Solanki, K.D. Patel, V.M. Pathak, C.K. Sumesh, Mater. Res. Express 4, 10306 (2017)

    Google Scholar 

  51. V. Dixit, C. Vyas, V.M. Pathak, G.K. Solanki, K.D. Patel, AIP Conf. Proc. 1953(070020), 1–4 (2018)

    Google Scholar 

  52. G. Su, V.G. Hadjiev, P.E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P.M. Ajayan, J. Lou, H. Peng, Nano Lett. 15, 506 (2015)

    CAS  Google Scholar 

  53. C.U. Vyas, P. Pataniya, C.K. Zankat, V.M. Pathak, K.D. Patel, G.K. Solanki, Mater. Sci. Semicond. Process. 71, 226 (2017)

    CAS  Google Scholar 

  54. J. Cao, Z. Wang, X. Zhan, Q. Wang, M. Safdar, Y. Wang, J. He, Nanotechnology 25, 105705 (2014)

    Google Scholar 

  55. M. Tannarana, P. Pataniya, G.K. Solanki, S.B. Pillai, K.D. Patel, P.K. Jha, V.M. Pathak, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.08.169

    Article  Google Scholar 

Download references

Acknowledgements

The author VRD is thankful to Bharatiya Vidya Bhavan, Smt. M. K. Patel School Narsanda Nadiad, Gujarat, for providing permission to carry out research work. The author VRD is also thankful to Material Science Semiconducting Processing Journal (Elsevier) for providing permission to reuse the Figure 1(a-b) from the already published work wide License number 5167730565294, date Oct, 14, 2021.

Author information

Authors and Affiliations

Authors

Contributions

The author VRD has grown Sb0.1Mo0.9Se2 single crystal by direct vapor transport technique. VRD has also carried out all the measurements and analysis work. VRD, SN, CUV, and JJ have equally contributed their expertise in the preparation of heterostructure using the thermal evaporation technique. Raman spectroscopic measurements were performed the by authors SN and PKJ. The entire work was supervised by the authors GKS and VMP. All authors have contributed equally in manuscript preparation and their final approval.

Corresponding author

Correspondence to Vijay Dixit.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, V., Nair, S., Joy, J. et al. Enhanced optoelectronics performances of multilayer Sb0.1Mo0.9Se2/SnSe2 heterostructure. J Mater Sci: Mater Electron 32, 28739–28749 (2021). https://doi.org/10.1007/s10854-021-07256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07256-9

Navigation