Skip to main content
Log in

Ultrafast synthesis of CdTe/ZnSe semiconductor QDs by microwave method and investigation of structural, optical, and photocatalytic properties of CdTe/ZnSe QDs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

This article has been updated

Abstract

CdTe/ZnSe semiconductor quantum dots were synthesized by the ultrafast microwave method in an aqueous solution. X-ray diffraction results showed the formation of the cubic structure of CdTe/ZnSe quantum dots. XRD, EDX, RAMAN, FT-IR, and TEM results confirmed the successful formation of CdTe/ZnSe core/shell quantum dots. Photoluminescence results indicated significant enhancement in PL intensity of CdTe quantum dots and quantum efficiency of CdTe/ZnSe core/shell quantum dots obtained was about 56% and also synthesized quantum dots had a large red-shift from 530 to 660 nm. The photocatalyst performance of CdTe/ZnSe quantum dots was studied by methylene blue and methylene orange as a pollutant under both UV light and sun light and results indicated that photocatalyst activity of CdTe/ZnSe quantum dots with methylene blue under UV light was much superior to other samples and its degradation percentage, pseudo-linear degradation rate, and turn over frequency (TOF) obtained were about 79%, 13.6 × 10–3 , and 1.03 × 10–4 , respectively. Also, for understanding about the main reactive species in the photodegradation process of methylene blue by catalyst under UV illumination, different radical scavengers were used and results confirm that electrons have a main role in photodegradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 05 November 2021

    The original version of this articles is updated due to error in title.

References

  1. M. Molaei, M. Marandi, E. Saievar-Iranizad, N. Taghavinia, B. Liu, H.D. Sun, X.W. Sun, Near-white emitting QD-LED based on hydrophilic CdS nanocrystals. J. Lumin. 132(2), 467–473 (2012)

    Article  CAS  Google Scholar 

  2. M. Samadpour, A. Irajizad, N. Taghavinia, M. Molaei, A new structure to increase the photostability of CdTe quantum dot sensitized solar cells. J. Phys. D: Appl. Phys. 44(4), 045103 (2011)

    Article  Google Scholar 

  3. Y. He, Lu. Hao-Ting, L.-M. Sai, Su. Yuan-Yuan, Hu. Mei, C.-H. Fan, W. Huang, L.-H. Wang, Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv. Mater. 20(18), 3416–3421 (2008)

    Article  CAS  Google Scholar 

  4. Z. Qiu, Yu. Jian Shu, Z.L. He, K. Zhang, S. Lv, D. Tang, CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization. Biosens. Bioelectron. 87, 18–24 (2017)

    Article  CAS  Google Scholar 

  5. V. Ncapayi, S. Parani, S.P. Songca, T. Kodama, O.S. Oluwafemi, Green synthesis of MPA–capped CdTe/CdSe quantum dots at different pH and its effect on the cell viability of fibroblast histiocytoma cells. Mater. Lett. 209, 299–302 (2017)

    Article  CAS  Google Scholar 

  6. J. Tian, R. Liu, Y. Zhao, Xu. Qing, S. Zhao, Controllable synthesis and cell-imaging studies on CdTe quantum dots together capped by glutathione and thioglycolic acid. J. Colloid Interface Sci. 336(2), 504–509 (2009)

    Article  CAS  Google Scholar 

  7. M. Marandi, B. Emrani, H. Zare, Synthesis of highly luminescent CdTe/CdS core-shell nanocrystals by optimization of the core and shell growth parameters. Opt. Mater. 69, 358–366 (2017)

    Article  CAS  Google Scholar 

  8. G.R. Bhand, N.B. Chaure, Synthesis of CdTe, CdSe and CdTe/CdSe core/shell QDs from wet chemical colloidal method. Mater. Sci. Semicond. Process. 68, 279–287 (2017)

    Article  CAS  Google Scholar 

  9. N.T. Hien, T.T.K. Chi, N.D. Vinh, H.T. Van, L.D. Thanh, P.V. Do, V.P. Tuyen, N.X. Ca, Synthesis, characterization and the photoinduced electron-transfer energetics of CdTe/CdSe type-II core/shell quantum dots. J. Lumin. 217, 116822 (2020)

    Article  CAS  Google Scholar 

  10. A. Moulick, I. Blazkova, V. Milosavljevic, Z. Fohlerova, J. Hubalek, P. Kopel, M. Vaculovicova, V. Adam, R. Kizek, Application of CdTe/ZnSe quantum dots in in vitro imaging of chicken tissue and embryo. Photochem. Photobiol. 91(2), 417–423 (2015)

    Article  CAS  Google Scholar 

  11. A. Moulick, V. Milosavljevic, J. Vlachova, R. Podgajny, D. Hynek, P. Kopel, V. Adam, Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA. Int. J. Nanomed. 12, 1277 (2017)

    Article  CAS  Google Scholar 

  12. F. Farahmandzadeh, M. Molaei, M. Karimipour, A.R. Shamsi, Highly luminescence CdTe/ZnSe core–shell QDs; synthesis by a simple low temperature approach. J. Mater. Sci.: Mater. Electron. 31(15), 12382–12388 (2020)

    CAS  Google Scholar 

  13. T. Fu, H.-Y. Qin, Hu. Hua-Jun, Z. Hong, S. He, Aqueous synthesis and fluorescence-imaging application of CdTe/ZnSe core/shell quantum dots with high stability and low cytotoxicity. J. Nanosci. Nanotechnol. 10(3), 1741–1746 (2010)

    Article  CAS  Google Scholar 

  14. Y. Li, W. Wang, D. Zhao, P. Chen, Du. Hongwu, Y. Wen, X. Zhang, Water-soluble fluorescent CdTe/ZnSe core/shell quantum dot: aqueous phase synthesis and cytotoxicity assays. J. Nanosci. Nanotechnol. 15(6), 4648–4652 (2015)

    Article  CAS  Google Scholar 

  15. M.B. Gawande, A. Goswami, T. Asefa, H. Guo, A.V. Biradar, D.-L. Peng, R. Zboril, R.S. Varma, Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44(21), 7540–7590 (2015)

    Article  CAS  Google Scholar 

  16. A.V. Nomoev, S.P. Bardakhanov, M. Schreiber, D.G. Bazarova, N.A. Romanov, B.B. Baldanov, B.R. Radnaev, V.V. Syzrantsev, Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation. Beilstein J. Nanotechnol. 6(1), 874–880 (2015)

    Article  CAS  Google Scholar 

  17. M. Mohammadi, M.R. Roknabadi, M. Behdani, A. Kompany, Enhancement of visible and UV light photocatalytic activity of rGO-TiO2 nanocomposites: the effect of TiO2/graphene oxide weight ratio. Ceram. Int. 45(10), 12625–12634 (2019)

    Article  CAS  Google Scholar 

  18. M. Molaei, S. Abbasi, M. Karimipour, F. Dehghan, A simple UV-assisted, room temperature approach for synthesis of water soluble PbS and PbS/CdS core-shell QDs. Mater. Chem. Phys. 216, 186–190 (2018)

    Article  CAS  Google Scholar 

  19. F. Dehghan, M. Molaei, F. Amirian, M. Karimipour, A.R. Bahador, Improvement of the optical and photocatalytic properties of ZnSe QDs by growth of ZnS shell using a new approach. Mater. Chem. Phys. 206, 76–84 (2018)

    Article  CAS  Google Scholar 

  20. D.C. Nguyen, K.-Y. Tien, Oh. Won-Chun, Synthesis of frost-like CuO combined graphene-TiO2 by self-assembly method and its high photocatalytic performance. Appl. Surf. Sci. 412, 252–261 (2017)

    Article  CAS  Google Scholar 

  21. A. Zyoud, A. Zu’bi, M.H.S. Helal, D.H. Park, G. Campet, H.S. Hilal, Optimizing photo-mineralization of aqueous methyl orange by nano-ZnO catalyst under simulated natural conditions. J. Environ. Health Sci. Eng. 13(1), 1–10 (2015)

    Article  CAS  Google Scholar 

  22. V.K. Gupta, R. Saravanan, S. Agarwal, F. Gracia, M.M. Khan, J. Qin, R.V. Mangalaraja, Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO2 nanocomposites. J. Mol. Liq. 232, 423–430 (2017)

    Article  CAS  Google Scholar 

  23. M. Jiao, L. Zhu, C. Xie, H. Zhao, C. Zhang, Y. Li, Y. He, H. Teng, E. Han, A novel electrodeposited sandwich electrode with an efficient performance in complex water treatment. Surf. Coat. Technol. 406, 126645 (2021)

    Article  CAS  Google Scholar 

  24. L.-L. Tan, S.-P. Chai, A.R. Mohamed, Synthesis and applications of graphene-based TiO2 photocatalysts. Chemsuschem 5(10), 1868–1882 (2012)

    Article  CAS  Google Scholar 

  25. M. Faraldos, A. Bahamonde, Environmental applications of titania-graphene photocatalysts. Catal. Today 285, 13–28 (2017)

    Article  CAS  Google Scholar 

  26. A.W. Morawski, E. Kusiak-Nejman, A. Wanag, J. Kapica-Kozar, R.J. Wróbel, B. Ohtani, M. Aksienionek, L. Lipińska, Photocatalytic degradation of acetic acid in the presence of visible light-active TiO2-reduced graphene oxide photocatalysts. Catal. Today 280, 108–113 (2017)

    Article  CAS  Google Scholar 

  27. M. Molaei, H. Hasheminejad, M. Karimipour, Synthesizing and investigating photoluminescence properties of CdTe and CdTe@ CdS core-shell quantum dots (QDs): a new and simple microwave activated approach for growth of CdS shell around CdTe core. Electron. Mater. Lett. 11(1), 7–12 (2015)

    Article  CAS  Google Scholar 

  28. R. Khafajeh, M. Molaei, M. Karimipour, Synthesis of ZnSe and ZnSe: Cu quantum dots by a room temperature photochemical (UV-assisted) approach using Na2SeO3 as Se source and investigating optical properties. Luminescence 32(4), 581–587 (2017)

    Article  CAS  Google Scholar 

  29. P.M. Amirtharaj, F.H. Pollak, Raman scattering study of the properties and removal of excess Te on CdTe surfaces. Appl. Phys. Lett. 45(7), 789–791 (1984)

    Article  CAS  Google Scholar 

  30. C. Shu, B. Huang, X. Chen, Y. Wang, X. Li, Li. Ding, W. Zhong, Facile synthesis and characterization of water soluble ZnSe/ZnS quantum dots for cellar imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 104, 143–149 (2013)

    Article  CAS  Google Scholar 

  31. A.E. Vikraman, A.R. Jose, M. Jacob, K.G. Kumar, Thioglycolic acid capped CdS quantum dots as a fluorescent probe for the nanomolar determination of dopamine. Anal. Methods 7(16), 6791–6798 (2015)

    Article  Google Scholar 

  32. R. Xie, L. Li, Y. Li, L. Liu, D. Xiao, J. Zhu, Fe: ZnSe semiconductor nanocrystals: synthesis, surface capping, and optical properties. J. Alloy. Compd. 509(7), 3314–3318 (2011)

    Article  CAS  Google Scholar 

  33. K. Saikia, P. Deb, E. Kalita, Facile synthesis of highly luminescent ZnSe (S) alloyed quantum dot for biomedical imaging. Curr. Appl. Phys. 13(5), 925–930 (2013)

    Article  Google Scholar 

  34. Y. Wang, J.P. Lu, Z.F. Tong, Rapid synthesis of CdSe nanocrystals in aqueous solution at room temperature. Bull. Mater. Sci. 33(5), 543–546 (2010)

    Article  CAS  Google Scholar 

  35. S.-R. Kim, I. Ali, J.-O. Kim, Phenol degradation using an anodized graphene-doped TiO2 nanotube composite under visible light. Appl. Surf. Sci. 477, 71–78 (2019)

    Article  CAS  Google Scholar 

  36. Li. Liu, M. Yue, Lu. Jinrong, Hu. Jinshan, Y. Liang, W. Cui, The enrichment of photo-catalysis via self-assembly perylenetetracarboxylic acid diimide polymer nanostructures incorporating TiO2 nano-particles. Appl. Surf. Sci. 456, 645–656 (2018)

    Article  CAS  Google Scholar 

  37. T. Mahvelati-Shamsabadi, E.K. Goharshadi, M. Shafaee, Z. Niazi, ZnS@ reduced graphene oxide nanocomposite as an effective sunlight driven photocatalyst for degradation of reactive black 5: a mechanistic approach. Sep. Purif. Technol. 202, 326–334 (2018)

    Article  CAS  Google Scholar 

  38. S. Talukdar, R.K. Dutta, A mechanistic approach for superoxide radicals and singlet oxygen mediated enhanced photocatalytic dye degradation by selenium doped ZnS nanoparticles. RSC Adv. 6(2), 928–936 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Molaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahmandzadeh, F., Molaei, M. & Karimipour, M. Ultrafast synthesis of CdTe/ZnSe semiconductor QDs by microwave method and investigation of structural, optical, and photocatalytic properties of CdTe/ZnSe QDs. J Mater Sci: Mater Electron 33, 95–104 (2022). https://doi.org/10.1007/s10854-021-07255-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07255-w

Navigation