Skip to main content

Advertisement

Log in

Aqueous synthesis of core/shell/shell CdSe/CdS/ZnS quantum dots for photocatalytic hydrogen generation

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel water-soluble core/shell/shell CdSe/CdS/ZnS quantum dot (QD) is prepared and employed as photocatalysts in the water splitting for hydrogen production. The combination of CdSe with CdS shell and ZnS shell effectively enhances the light harvest ability of the photocatalyst in the visible region, facilitates the separation and transfer of photoinduced electrons and holes and inhibits the recombination of photogenerated electron–hole pairs. The results of photocatalytic hydrogen production show that the amount of hydrogen produced by CdSe/CdS/ZnS QDs increases significantly within 7 h compared with CdSe QDs and CdSe/CdS QDs. In addition, the excellent recyclability of the photocatalyst makes it more promising for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yu HJ, Zhao YF, Zhou C, Shang L, Peng Y, Cao YH, Wu LZ, Tung CH, Zhang TR (2014) Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J Mater Chem A 2:3344–3351

    Article  Google Scholar 

  2. Li K, Su FY, Zhang WD (2016) Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen. Appl Surf Sci 375:110–117

    Article  Google Scholar 

  3. Wang DF, Tang JW, Zou ZG, Ye JH (2005) Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M = Mg, Ni, Zn). Chem Mater 17:5177–5182

    Article  Google Scholar 

  4. Liu MY, You WS, Lei ZB, Takata T, Domen K, Can LI (2006) Photocatalytic water splitting to hydrogen over a visible light-driven LaTaON2 catalyst. Chin J Catal 27:556–558

    Article  Google Scholar 

  5. Li XB, Gao YJ, Wu HL, Wang Y, Guo Q, Huang MY, Chen B, Tung CH, Wu LZ (2017) Assembling metallic 1T-MoS2 nanosheets with inorganic-ligand stabilized quantum dots for exceptional solar hydrogen evolution. Chem Commun 53:5606–5609

    Article  Google Scholar 

  6. Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL (2017) Energy transfer with semiconductor quantum dot bioconjugates: a versatile platform for biosensing, energy harvesting, and other developing applications. Chem Rev 117:536–711

    Article  Google Scholar 

  7. Li XB, Li ZJ, Gao YJ, Meng QY, Yu S, Weiss RG, Tung CH, Wu LZ (2014) Mechanistic insights into the interface-directed transformation of thiols into disulfides and molecular hydrogen by visible-light irradiation of quantum dots. Angew Chem Int Ed 53:2085–2089

    Article  Google Scholar 

  8. Zhao J, Holmes MA, Osterloh FE (2013) Quantum confinement controls photocatalysis: a free energy analysis for photocatalytic proton reduction at CdSe nanocrystals. ACS Nano 7:4316–4325

    Article  Google Scholar 

  9. Zhang X, Huang H, Liu J, Liu Y, Kang ZH (2013) Carbon quantum dots serving as spectral converters through broadband upconversion of near-infrared photons for photoelectrochemical hydrogen generation. J Mater Chem A 1:11529–11533

    Article  Google Scholar 

  10. Zheng DD, Zhang GG, Wang XC (2015) Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis. Appl Catal B Environ 179:479–488

    Article  Google Scholar 

  11. Yu JG, Zhang J, Jaroniec M (2010) Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1-xCdxS solid solution. Green Chem 12:1611–1614

    Article  Google Scholar 

  12. Saha S, Das G, Thote J, Banerjee R (2014) Photocatalytic metal-organic framework from CdS quantum dot incubated luminescent metallohydrogel. J Am Chem Soc 136:14845–14851

    Article  Google Scholar 

  13. Pan J, Li JT, Yan ZL, Zhou BH, Wu HS, Xiong X (2013) SnO2@CdS nanowire-quantum dots heterostructures: tailoring optical properties of SnO2 for enhanced photodetection and photocatalysis. Nanoscale 5:3022–3029

    Article  Google Scholar 

  14. Liu Y, Yan K, Zhang JD (2016) Graphitic carbon nitride sensitized with CdS quantum dots for visible-light-driven photoelectrochemical aptasensing of tetracycline. ACS Appl Mater Interfaces 8:28255–28264

    Article  Google Scholar 

  15. Zhai CY, Zhu MS, Pang FZ, Bin D, Lu C, Goh MC, Yang P, Du YK (2016) High efficiency photoelectrocatalytic methanol oxidation on CdS quantum dots sensitized Pt electrode. ACS Appl Mater Interfaces 8:5972–5980

    Article  Google Scholar 

  16. Fang Z, Wang YB, Song JB, Sun YM, Zhou JJ, Xu R, Duan HW (2013) Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H2 evolution. Nanoscale 5:9830–9838

    Article  Google Scholar 

  17. Kim HN, Kim TW, Kim IY, Hwang SJ (2011) Cocatalyst-free photocatalysts for efficient visible-light induced H2 production: porous assemblies of CdS quantum dots and layered titanate nanosheets. Adv Funct Mater 21:3111–3118

    Article  Google Scholar 

  18. Dibbell RS, Watson DF (2009) Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles. J Phys Chem C 113:3139–3149

    Article  Google Scholar 

  19. Zhu YX, Wang YF, Chen Z, Qin LS, Yang LB, Zhu L, Tang P, Gao T, Huang YX, Sha ZL, Tang G (2015) Visible light induced photocatalysis on CdS quantum dots decorated TiO2 nanotube arrays. Appl Catal A Gen 498:159–166

    Article  Google Scholar 

  20. Hensel J, Wang GM, Li Y, Zhang JZ (2010) Synergistic effect of CdSe Quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett 10:478–483

    Article  Google Scholar 

  21. Wu KF, Lian TQ (2016) Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Chem Soc Rev 45:3781–3810

    Article  Google Scholar 

  22. Harris C, Kamat PV (2010) Photocatalytic events of CdSe quantum dots in confined media. electrodic behavior of coupled platinum nanoparticles. ACS Nano 4:7321–7330

    Article  Google Scholar 

  23. Wang WJ, Hao Q, Wang W, Bao L, Lei JP, Wang QB, Ju HX (2014) Quantum dot-functionalized porous ZnO nanosheets as a visible light induced photoelectrochemical platform for DNA detection. Nanoscale 6:2710–2717

    Article  Google Scholar 

  24. Li ZJ, Li XB, Wang JJ, Yu S, Li CB, Tung CH, Wu LZ (2013) A robust “artificial catalyst” in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution. Energy Environ Sci 6:465–469

    Article  Google Scholar 

  25. Lin HH, Wang CX, Wu JP, Xu ZZ, Huang YJ, Zhang C (2015) Colloidal synthesis of MoS2 quantum dots: size-dependent tunable photoluminescence and bioimaging. New J Chem 39:8492–8497

    Article  Google Scholar 

  26. Gao WY, Wang MQ, Ran CX, Li L (2015) Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties. Chem Commun 51:1709–1712

    Article  Google Scholar 

  27. Wang P, Li DZ, Chen J, Zhang XY, Xian JJ, Yang X, Zheng XZ, Li XF, Shao Y (2014) A novel and green method to synthesize CdSe quantum dots-modified TiO2 and its enhanced visible light photocatalytic activity. Appl Catal B Environ 160:217–226

    Article  Google Scholar 

  28. Cao SW, Yuan YP, Fang J, Shahjamali MM, Boey FYC, Barber J, Loo SCJ, Xue C (2013) In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. Int J Hydrog Energ 38:1258–1266

    Article  Google Scholar 

  29. Hao XQ, Jin ZL, Yang H, Lu GX, Bi YP (2017) Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution. Appl Catal B Environ 210:45–56

    Article  Google Scholar 

  30. Lian ZC, Wang WH, Xiao SN, Li X, Cui YY, Zhang DQ, Li GS, Li HX (2015) Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution. Sci Rep 5:10461–10470

    Article  Google Scholar 

  31. Hou JG, Yang C, Wang Z, Jiao SQ, Zhu HM (2013) Bi2O3 quantum dots decorated anatase TiO2 nanocrystals with exposed 001 facets on graphene sheets for enhanced visible-light photocatalytic performance. Appl Catal B Environ 129:333–341

    Article  Google Scholar 

  32. Ge MZ, Cao CY, Li SH, Zhang SN, Deng S, Huang JY, Li QS, Zhang KQ, Al-Deyab SS, Lai YK (2015) Enhanced photocatalytic performances of n-TiO2 nanotubes by uniform creation of p-n heterojunctions with p-Bi2O3 quantum dots. Nanoscale 7:11552–11560

    Article  Google Scholar 

  33. Chen W, Liu TY, Huang T, Liu XH, Zhu JW, Duan GR, Yang XJ (2015) In situ fabrication of novel Z-scheme Bi2WO6 quantum dots/g-C3N4 ultrathin nanosheets heterostructures with improved photocatalytic activity. Appl Surf Sci 355:379–387

    Article  Google Scholar 

  34. Ye MD, Gong JJ, Lai YK, Lin CJ, Lin ZQ (2012) High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J Am Chem Soc 134:15720–15723

    Article  Google Scholar 

  35. Wang Z, Hou JG, Jiao SQ, Huang K, Zhu HM (2012) In situ chemical reduction of the Ta3N5 quantum dots coupled TaON hollow spheres heterojunction photocatalyst for water oxidation. J Mater Chem 22:21972–21978

    Article  Google Scholar 

  36. Niu JZ, Shen HB, Zhou CH, Xu WW, Li XM, Wang HZ, Lou SY, Du ZL, Li LS (2010) Controlled synthesis of high quality type-II/type-I CdS/ZnSe/ZnS core/shell1/shell2 nanocrystals. Dalton Trans 39:3308–3314

    Article  Google Scholar 

  37. Zhang HY, Sun P, Liu C, Gao HY, Xu LR, Fang J, Wang M, Liu JL, Xu SK (2011) l-Cysteine capped CdTe–CdS core-shell quantum dots: preparation, characterization and immuno-labeling of HeLa cells. Luminescence 26:86–92

    Article  Google Scholar 

  38. Amirav L, Alivisatos AP (2010) Photocatalytic hydrogen production with tunable nanorod heterostructures. J Phys Chem Lett 1:1051–1054

    Article  Google Scholar 

  39. Li ZJ, Fan XB, Li XB, Li JX, Zhan F, Tao Y, Zhang XY, Kong QY, Zhao NJ, Zhang JP, Ye C, Gao YJ, Wang XZ, Meng QY, Feng K, Chen B, Tung CH, Wu LZ (2017) Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation. J Mater Chem A 5:10365–10373

    Article  Google Scholar 

  40. Tang Y, Wang R, Yang Y, Yan D, Xiang X (2016) Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes. ACS Appl Mater Interfaces 8:19446–19455

    Article  Google Scholar 

  41. Zhu HM, Lian TQ (2012) Wavefunction engineering in quantum confined semiconductor nanoheterostructures for efficient charge separation and solar energy conversion. Energy Environ Sci 5:9406–9418

    Article  Google Scholar 

  42. Yalcin AO, Goris B, Dijk-Moes RJAV, Fan ZC, Erdamar AK, Tichelaar FD, Vlugt TJH, Tendeloo GV, Bals S, Vanmaekelbergh D, Zandbergen HW, Huis MAV (2015) Heat-induced transformation of CdSe–CdS–ZnS core-multishell quantum dots by Zn diffusion into inner layers. Chem Commun 51:3320–3323

    Article  Google Scholar 

  43. Xuan TT, Liu JQ, Li HL, Sun HC, Pan LK, Chen XH, Sun Z (2015) Microwave synthesis of high luminescent aqueous CdSe/CdS/ZnS quantum dots for crystalline silicon solar cells with enhanced photovoltaic performance. RSC Adv 5:7673–7678

    Article  Google Scholar 

  44. Han JS, Liu Y, Dai FX, Zhao RY, Wang L (2018) Fabrication of CdSe/CaTiO3 nanocomposties in aqueous solution for improved photocatalytic hydrogen production. Appl Surf Sci 459:520–526

    Article  Google Scholar 

  45. Nguyen AT, Lin WH, Lu YH, Chiou YD, Hsu YJ (2014) First demonstration of rainbow photocatalysts using ternary Cd1−xZnxSe nanorods of varying compositions. Appl Catal A Gen 476:140–147

    Article  Google Scholar 

  46. Lin XP, Xing JC, Wang WD, Shan ZC, Xu FF, Huang FQ (2007) Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts. J Phys Chem C 111:18288–18293

    Article  Google Scholar 

  47. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27:734–740

    Article  Google Scholar 

  48. Li X, Yu JG, Low JX, Fang YP, Xiao J, Chen XB (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534

    Article  Google Scholar 

  49. Hong SJ, Lee S, Jang JS, Lee JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4:1781–1787

    Article  Google Scholar 

  50. Banerjee S, Mohapatra SK, Das PP, Misra M (2008) Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem Mater 20:6784–6791

    Article  Google Scholar 

  51. Song XM, Wu JM, Tang MZ, Qi B, Yan M (2008) Enhanced photoelectrochemical response of a composite titania thin film with single-crystalline rutile nanorods embedded in anatase aggregates. J Phys Chem C 112:19484–19492

    Article  Google Scholar 

  52. Han JS, Dai FX, Liu Y, Zhao RY, Wang L, Feng SH (2019) Synthesis of CdSe/SrTiO3 nanocomposites with enhanced photocatalytic hydrogen production activity. Appl Surf Sci 467–468:1033–1039

    Article  Google Scholar 

  53. Zhao LL, Jia J, Yang ZY, Yu JY, Wang AL, Sang YH, Zhou WJ, Liu H (2017) One-step synthesis of CdS nanoparticles/MoS2 nanosheets heterostructure on porous molybdenum sheet for enhanced photocatalytic H2 evolution. Appl Catal B Environ 210:290–296

    Article  Google Scholar 

  54. Yashaswi N, Mohan SM (2019) Wave function engineering of Type-I/Type-II excitons of CdSe/CdS core-shell quantum dots. Sci Rep 9:2–12

    Article  Google Scholar 

  55. Mohan SM (2015) Enhancement of charge transfer and quenching of photoluminescence of capped CdS quantum dots. Sci Rep 5:12056–12067

    Article  Google Scholar 

  56. Chuang C, Doane TL, Lo SS, Scholes GD, Burda C (2011) Measuring electron and hole transfer in core/shell nanoheterostructures. ACS Nano 5:6016–6024

    Article  Google Scholar 

  57. Sarkar P, Springborg M, Seifert G (2005) A theoretical study of the structural and electronic properties of CdSe/CdS and CdS/CdSe core/shell nanoparticles. Chem Phys Lett 405:103–107

    Article  Google Scholar 

  58. Pan JQ, Dong ZJ, Wang BB, Jiang ZY, Zhao C, Wang JJ, Song CS, Zheng YY, Li CR (2019) The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction. Appl Catal B Environ 242:92–99

    Article  Google Scholar 

  59. Sun MM, Chen ZY, Jiang XH, Feng C, Zeng RC (2019) Optimized preparation of Co-Pi decorated g-C3N4@ZnO shell-core nanorod array for its improved photoelectrochemical performance. J Alloy Compd 780:540–551

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Numbers 51703112, 51772162, 21571112, 51572136, 21601103), Natural Science Foundation of Shandong Province, China (Grant Numbers ZR2017BEM040, ZR2016BQ28, ZR2016BQ34), the Taishan Scholars program and China Postdoctoral Science Foundation (Grant Numbers 2017M622152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jishu Han.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Dai, F., Zhao, R. et al. Aqueous synthesis of core/shell/shell CdSe/CdS/ZnS quantum dots for photocatalytic hydrogen generation. J Mater Sci 54, 8571–8580 (2019). https://doi.org/10.1007/s10853-019-03484-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03484-x

Navigation