Skip to main content
Log in

The influential mechanism of Ti doping on thermoelectric properties of Bi0.5Sb1.5Te3 alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Ti-doped bismuth telluride-based thermoelectric material was prepared by high-temperature smelting combined with powder metallurgy, and the electron and phonon transporting mechanism was studied by a combination of first-principle calculations and experimental tests. The results show that Ti doping will introduce impurity levels, and its 3d orbits could significantly increase the density of states near the Fermi level, thereby increasing the effective mass, carrier concentration, and electrical conductivity and reducing the Seebeck coefficient. Ti doping will introduce a larger stress field, increase phonon scattering, and reduce lattice thermal conductivity. The maximum ZT value of the sample reached 1.25 at 340 K, which is 21.36% higher than that of the undoped sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895), 1457–1461 (2008)

    Article  CAS  Google Scholar 

  2. F.J. Disalvo, Thermoelectric cooling and power generation. Science 285(5428), 703–706 (1999)

    Article  CAS  Google Scholar 

  3. R. Chein, G. Huang, Thermoelectric cooler application in electronic cooling. Appl. Therm. Eng. 24(14–15), 2207–2217 (2004)

    Article  Google Scholar 

  4. X. Tang, W. Xie, L. Han et al., Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Appl. Phys. Lett. 90(1), 804 (2007)

    Article  Google Scholar 

  5. M.R.A. Hayati Mamur, F.K. Bhuiyan, M. Nil, A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew. Sust. Energ. Rev. 82, 4159–4169 (2018)

    Article  Google Scholar 

  6. W. Xie, S. Wang, S. Zhu et al., High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering. J. Mater. Sci. 48(7), 2745–2760 (2013)

    Article  CAS  Google Scholar 

  7. H.J. Yu, M. Jeong, Y.S. Lim et al., Effects of Cu addition on band gap energy, density of state effective mass and charge transport properties in Bi2Te3 composites. RSC Adv. 4(82), 43811–43814 (2014)

    Article  CAS  Google Scholar 

  8. R. Koc, H.U. Anderson, Electrical conductivity and Seebeck coefficient of (La, Ca) (Cr, Co)O3. J. Mater. Sci. 27(20), 5477–5482 (1992)

    Article  CAS  Google Scholar 

  9. W, Fulkerson, et al., Thermal conductivity, electrical resistivity, and Seebeck coefficient of silicon from 100 to 1300°K. Phys. Rev. 167(3), 765–782 (1968)

    Article  Google Scholar 

  10. G.S. Nolas, G.A. Slack, S.B. Schujman, Semiconductor clathrates: A phonon glass electron crystal material with potential for thermoelectric applications. Semiconduct. Semimet. 69(01), 255–300 (2001)

    Article  CAS  Google Scholar 

  11. D. Wu, L. Xie, X. Chao et al., Step-up thermoelectric performance realized in Bi2Te3 alloyed GeTe via carrier concentration and microstructure modulations. ACS Appl. Energ. Mater. 2(3), 1616–1622 (2019)

    Article  CAS  Google Scholar 

  12. C. Chiritescu, C. Mortensen, D.G. Cahill et al., Lower limit to the lattice thermal conductivity of nanostructured Bi2Te3-based materials. J. Appl. Phys. 106(7), 634–126 (2009)

    Article  Google Scholar 

  13. X. Guo, X. Jia, T. Su et al., Double effects of high pressure and Sb doping content on thermoelectric properties of Bi2Te3-based alloys. Chem. Phys. Lett. 550, 170–174 (2012)

    Article  CAS  Google Scholar 

  14. Q.H. Zhang, L.L. Xu, L.J. Wang et al., Effects of Different Amount of Se-doping on Microstructures and Thermoelectric Properties of n-type Bi2Te3-xSex. J. Inorg. Mater. 29(11), 1139–1144 (2014)

    Article  CAS  Google Scholar 

  15. L. Jae, S. Ji, K. Yong-Il et al., Control of carrier concentration by Ag doping in N-Type Bi2Te3 based compounds. Appl. Sci. 8(5), 735 (2018)

    Article  Google Scholar 

  16. W. Wu, W. Liu, F. Yu, Enhancement of thermoelectric performance through synergy of Pb acceptor doping and superstructure modulation for p-type Bi2Te3. J. Mater. Sci. Mater. Electron. 31(6), 1–10 (2020)

    Article  Google Scholar 

  17. T. Nishikawa, T. Nakajima, Y. Shinohara, An exploratory study on effect of the isomorphic replacement of Ti4+ ions by various metal ions on the light absorption character of TiO2. J. Mol. Struct. 545(1–3), 67–74 (2001)

    Article  CAS  Google Scholar 

  18. M.B. Gray, S. Hariyani, T.A. Strom et al., High-efficiency blue photoluminescence in the Cs2NaInCl6:Sb3+ double perovskite phosphor. J. Mater. Chem. C 8(20), 6797–6803 (2020)

    Article  CAS  Google Scholar 

  19. D.M. Rowe, V.S. Shukla, N. Savvides, Phonon scattering at grain boundaries in heavily doped fine-grained silicon-germanium alloys. Nature 290(5809), 765–766 (1981)

    Article  CAS  Google Scholar 

  20. S. Wang, F. Fan, X. She et al., Optimizing thermoelectric performance of Cd-doped β-Zn 4Sb 3 through self-adjusting carrier concentration. Intermetallics 19(12), 1823–1830 (2011)

    Article  CAS  Google Scholar 

  21. L. Hu, Y. Guo, J. Li et al., Control of donor-like effect in V 2 VI 3 polycrystalline thermoelectric materials. Mater. Res. Bull. 99, 377–384 (2017)

    Article  Google Scholar 

  22. X. Tang, D. Fan, K. Peng et al., Dopant induced impurity bands and carrier concentration control for thermoelectric enhancement in p-type Cr2Ge2Te6. Chem. Mater. 29(17), 7401–7407 (2017)

    Article  CAS  Google Scholar 

  23. K. Ueda, S. Inoue, S. Hirose et al., Transparent p-type semiconductor: LaCuOS layered oxysulfide. Appl. Phys. Lett. 77(17), 2701–2703 (2000)

    Article  CAS  Google Scholar 

  24. O. Yamashita, N. Sadatomi, Dependence of Seebeck coefficient on carrier concentration in heavily B-and P-doped Si1-xGex (x≦ 0.05) system. Jap. J. Appl. Phys. 38(11R), 6394 (1999)

    Article  CAS  Google Scholar 

  25. Y. Pei, A.D. Lalonde, H. Wang et al., Low effective mass leading to high thermoelectric performance. Energ. Environ. Sci. 5(7), 7963–7969 (2012)

    Article  CAS  Google Scholar 

  26. T. Takeuchi, Y. Terazawa, Yukihiro Furuta (2013) Effect of heavy element substitution and off-stoichiometric composition on thermoelectric properties of Fe2VAl-based Heusler Phase. J. Electron. Mater. 42(7), 2084–2090 (2013)

    Article  CAS  Google Scholar 

  27. X.J. Zheng, L. Zhu, Y. Zhou et al., Impact of grain sizes on phonon thermal conductivity of bulk thermoelectric materials. Appl. Phys. Lett. 87(24), 2229 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the School youth fund of Wuhan Donghu University. Thank my tutors Professor Fan Xi'an and Professor Li Guangqiang for their guidance. Thank my wife Wang Wei for her support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Feng.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Tang, Y. & Lei, J. The influential mechanism of Ti doping on thermoelectric properties of Bi0.5Sb1.5Te3 alloy. J Mater Sci: Mater Electron 32, 28534–28541 (2021). https://doi.org/10.1007/s10854-021-07232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07232-3

Navigation