Skip to main content

Advertisement

Log in

Electrically conductive and UV protective graphene surface-modified polyester blends

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure fabrics (polyester, cotton and wool) and blend fabrics (polyester/cotton and polyester/wool) were surface modified with reduced GO (rGO) and the modification was confirmed by field emission scanning electron microscope (FESEM) and Fourier transform infrared (FTIR) analyses. Also, the roughness parameters were determined. From the color parameters, the unmodified fabrics have higher lightness and solar reflectance than the rGO-modified ones which indicate the presence of dark rGO inside the fabric. Dielectric Spectroscopy, BDS, was employed to investigate the dielectric and electrical properties of the prepared samples on a broad range of frequency 0.1–20 MHz. The rGO-modification enhances dramatically the electrical conductivity of the pure fabrics and their blends to be in the range of 10−3 and 10−4 S/cm that could be considered as synthetic metal textiles. This makes rGO-modified fabrics promising as smart textiles in different potential applications as flexibly conductive wearable textiles in sensing, energy storage and conversion devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. V. Koncar, Smart Textiles and Their Applications (Elsevier, Amsterdam, 2016), pp. 1–8

    Book  Google Scholar 

  2. A.H.C. Poulsson, D. Eglin, R.G. Richards, PEEK Biomaterials Handbook (Elsevier, Amsterdam, 2019), pp. 179–201

    Book  Google Scholar 

  3. M. Gunay, Eco-Friendly Textile Dyeing and Finishing, 1st edn. (IntechOpen, University of Engineering & Management, India, 2013)

    Book  Google Scholar 

  4. Q. Wei, Surface Modification of Textiles (Woodhead Publishing Limited, Sawston, 2009)

    Book  Google Scholar 

  5. Q. Wei, Y. Xu, Y. Wang, Surface Modification of Textiles (Elsevier Inc., Amsterdam, 2009), pp. 58–90

    Book  Google Scholar 

  6. B. Şimşek, M. Karaman, J. Coatings Technol. Res. 17, 381 (2020)

    Article  Google Scholar 

  7. Y. Liu, J. Hu, Y. Zhu, Z. Yang, Carbohydr. Polym. 61, 276 (2005)

    Article  CAS  Google Scholar 

  8. S.Q. Jiang, R.H. Guo, Modification of Textile Surfaces Using Electroless Deposition (Woodhead Publishing Limited, Sawston, 2009)

    Book  Google Scholar 

  9. H. Mattila,Text. Fash. Mater. Des. Technol (Elsevier Inc., 2015), pp. 355–376

  10. S. Luo, W.J. Van Ooij, J. Adhes. Sci. Technol. 16, 1715 (2002)

    Article  CAS  Google Scholar 

  11. M. Mahbubul Bashar, M.A. Khan, J. Polym. Environ. 21, 181 (2013)

    Article  CAS  Google Scholar 

  12. A. Nadi, A. Boukhriss, A. Bentis, E. Jabrane, S. Gmouh, Text. Prog. 50, 67 (2018)

    Article  Google Scholar 

  13. G. Cai, Z. Xu, M. Yang, B. Tang, X. Wang, Appl. Surf. Sci. 393, 441 (2017)

    Article  CAS  Google Scholar 

  14. J.R. Gong, Graphene - Synthesis, Characterization,&Nbsp;Properties and Applications (IntechOpen, London, 2012)

    Google Scholar 

  15. M. Shateri-Khalilabad, M. Yazdanshenas, Cellulose 20, 963 (2013)

    Article  CAS  Google Scholar 

  16. K. Vinisha Rani, B. Sarma, A. Sarma, Diam. Relat. Mater. 84, 77 (2018)

    Article  CAS  Google Scholar 

  17. T. Makowski, D. Kowalczyk, W. Fortuniak, D. Jeziorska, S. Brzezinski, A. Tracz, (n.d.)

  18. J. Molina, J. Fernández, J.C. Inés, A.I. Del, J. Río, Bonastre, F. Cases, Electrochim. Acta 93, 44 (2013)

    Article  CAS  Google Scholar 

  19. B. Ouadil, O. Cherkaoui, M. Safi, M. Zahouily, Appl. Surf. Sci. 414, 292 (2017)

    Article  CAS  Google Scholar 

  20. A. Berendjchi, R. Khajavi, A.A. Yousefi, M.E. Yazdanshenas, Appl. Surf. Sci. 363, 264 (2016)

    Article  CAS  Google Scholar 

  21. G. Turky, S.S. Shaaban, A. Schöenhals, J. Appl. Polym. Sci. 113, 2477 (2009)

    Article  CAS  Google Scholar 

  22. G. Turky, M.A. Moussa, M. Hasanin, N.S. El-Sayed, S. Kamel, Arab. J. Sci. Eng. 46, 17 (2021)

    Article  CAS  Google Scholar 

  23. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003)

    Book  Google Scholar 

  24. M. Fathy, A. Gomaa, F.A. Taher, M.M. El-Fass, A.E.-H.B. Kashyout, J. Mater. Sci. 2016, 51 (2016)

    Google Scholar 

  25. G. Hamdy, A. Taher, Polym. Eng. Sci. 60, 2567 (2020)

    Article  CAS  Google Scholar 

  26. G. Cadelano, A. Bortolin, G. Ferrarini, B. Molinas, D. Giantin, P. Zonta, P. Bison, J. Nondestruct. Eval. 35, 49 (2016)

    Article  Google Scholar 

  27. J.U. Halpegama, P.M.C.J. Bandara, L. Jayarathna, A. Bandara, C.-Y. Yeh, J.-Y. Chen, C. Kuss, U. Dahanayake, A.C. Herath, S.K. Weragoda, X. Chen, R. Weerasooriya, Environ. Adv. 3, 100024 (2021)

    Article  Google Scholar 

  28. K. Tewatia, A. Sharma, M. Sharma, A. Kumar, Mater. Today Proc. (2020)

  29. L. Chen, C. Xu, J. Liu, X. Fang, Z. Zhang, Sol. Energy 148, 17 (2017)

    Article  CAS  Google Scholar 

  30. P. Abid, S.S. Sehrawat, M. Islam, and S. Ahmad, 8, (2018)

  31. U.A. Méndez-Romero, S.A. Pérez-García, X. Xu, E. Wang, L. Licea-Jiménez, Carbon 146, 491 (2019)

    Article  Google Scholar 

  32. A. Hunt, E.Z. Kurmaev, A. Moewes, Carbon 75, 366 (2014)

    Article  CAS  Google Scholar 

  33. J. Park, Y. Kim, S.Y. Park, S.J. Sung, H.W. Jang, C.R. Park, Carbon 159, 175 (2020)

    Article  CAS  Google Scholar 

  34. V.S. Kindalkar, K. K, S. Bhat, S.M. Dharmaprakash, Mater. Chem. Phys. 261, 124224 (2021)

    Article  CAS  Google Scholar 

  35. H. Chang, Z. Sun, M. Saito, Q. Yuan, H. Zhang, J. Li, Z. Wang, T. Fujita, F. Ding, Z. Zheng, F. Yan, H. Wu, M. Chen, Y. Ikuhara, ACS Nano 7, 6310 (2013)

    Article  CAS  Google Scholar 

  36. H. Liang, AIP Adv. 4, 107131 (2014)

    Article  Google Scholar 

  37. H. Namikawa, J. Non Cryst. Solids 18, 173 (1975)

    Article  CAS  Google Scholar 

  38. J. Barton, Verres Refract. 20, 328 (1966)

    CAS  Google Scholar 

Download references

Funding

Funding was provided by Academy of Scientific and Innovative Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Taher.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-daim, H.M.A., Taher, F.A., Morsy, N.S. et al. Electrically conductive and UV protective graphene surface-modified polyester blends. J Mater Sci: Mater Electron 32, 28358–28372 (2021). https://doi.org/10.1007/s10854-021-07213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07213-6

Navigation