Skip to main content

Advertisement

Log in

Hematite nanofibers based photoanode for effective photoelectrochemical water oxidation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sacrificial template-assisted iron(III) oxide (Fe2O3) nanofibers have been prepared by simple electrospinning process on the surface of fluorine-doped tin dioxide (FTO) substrate and used as an efficient photoanode in photoelectrochemical water splitting. The Fe2O3 nanofibers with different thicknesses were obtained on FTO substrate by electrospinning of composite polycaprolactone-FeCl3 (0.16 g of FeCl3 in 10 ml of 15 % PCL solution) at different time durations (3, 5, 7, and 9 h). The systematic study on crystallinity, morphology, specific surface area, and charge recombination process of the photoanodes was performed. The high optical absorbance and band-gap energy were observed for the Fe2O3 photoanodes prepared from 5 h electrospun fibers on the FTO surface (E-spin Fe2O3 NFs@FTO/5 h). The Nyqust plots and Mott-Schottky plots of electrochemical impedance spectroscopy measurements were validated that E-spin Fe2O3 NFs@FTO/5 h photoanode suppresses the charge recombination rates, enhances the electron density, and subsequently improves the performance of photoelectrochemical water splitting. The E-spin Fe2O3 NFs@FTO/5 h photoanode has attained the highest photocurrent density of 0.25 mAcm−2 at 1.23 V vs. RHE applied potential. Moreover, the prepared photoanodes were well attributed to the nanofiber morphology with high crystallinity and, thus, increased the optical absorption rate with improved charge transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Ma, K. Song, L. Wang, F. Gao, B. Tang, H. Hou, W. Yang, WO3/BiVO4 type-II heterojunction arrays decorated with oxygen-deficient ZnO passivation layer: a highly efficient and stable photoanode. ACS Appl. Mater. Interfaces 11, 889–897 (2018)

    Article  CAS  Google Scholar 

  2. H. Hou, H. Liu, F. Gao, M. Shang, L. Wang, L. Xu, W. Yang, Packaging BiVO4 nanoparticles in ZnO microbelts for efficient photoelectrochemical hydrogen production. Electrochim. Acta 283, 497–508 (2018)

    Article  CAS  Google Scholar 

  3. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrog. Energy 27, 991–1022 (2002)

    Article  CAS  Google Scholar 

  4. S.Z. Ajabshir, N. Ghasemian, M.M. Kamazani, M.S. Niasari, Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrason. Sonochem. 71, 105376 (2021)

    Article  CAS  Google Scholar 

  5. S.Z. Ajabshir, M.S. Morassaei, O. Amiri, M.S. Niasari, L.K. Foong, Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46, 17186–17196 (2020)

    Article  CAS  Google Scholar 

  6. F.F. Abdi, N. Firet, A. Dabirian, R.V.D. Krol, Spray-deposited Co-Pi Catalyzed BiVO4: a low-cost route towards highly efficient photoanodes. MRS Online Proceedings Library 1446, 7-12 (2012)

  7. F.F. Abdi, A. Dabirian, B. Dam, R.V.D. Krol, Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO4 photoanodes decorated with Ag@SiO2 core–shell nanoparticles. Phys. Chem. Chem. Phys. 16, 15272–15277 (2014)

    Article  CAS  Google Scholar 

  8. A. Dabirian, R.V.D. Krol, High-temperature ammonolysis of thin film Ta2O5 photoanodes: evolution of structural, optical, and photoelectrochemical properties. Chem. Mater. 27, 708–715 (2015)

    Article  CAS  Google Scholar 

  9. G. Wang, X. Yang, F. Qian, Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 10, 1088–1092 (2010)

    Article  CAS  Google Scholar 

  10. S.Y. Cao, X.Q. Yan, Z. Kang, Band alignment engineering for improved performance and stability of ZnFe2O4 modified CdS/ZnO nanostructured photoanode for PEC water splitting. Nano Energy 24, 25–31 (2016)

    Article  CAS  Google Scholar 

  11. Y.J. Zhong, Z.S. Li, X. Zhao, Enhanced water-splitting performance of perovskite SrTaO2N photoanode film through ameliorating interparticle charge transport. Adv. Funct. Mater. 26, 7156–7163 (2016)

    Article  CAS  Google Scholar 

  12. M.M. Kamazani, S.Z. Ajabshir, M. Ghodrati, One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J. Mater. Sci.: Mater. Electron. 31, 17332–17338 (2020)

    Google Scholar 

  13. S.Z. Ajabshir, M.M. Kamazani, Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int. 46, 26548–26556 (2020)

    Article  CAS  Google Scholar 

  14. S.A.H. Asil, S.Z. Ajabshir, O. Amiri, M.S. Niasari, Amino acid assisted-synthesis and characterization of magnetically retrievable ZnCo2O4–Co3O4 nanostructures as high activity visible-light-driven photocatalyst. Int. J. Hydrog. Energy 45, 22761–22774 (2020)

    Article  CAS  Google Scholar 

  15. J.Y. Kim, G. Magesh, D.H. Youn, J.W. Jang, J. Kubota, K. Domen, J.S. Lee, Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 3, 1–8 (2013)

    Article  Google Scholar 

  16. E. Noh, K.J. Noh, K.S. Yun, B.R. Kim, H.J. Jeong, H.J. Oh, S.J. Kim, Enhanced water splitting by Fe2O3-TiO2-FTO photoanode with modified energy band structure. Sci. World J. 2013, 1-8 (2013)

  17. K.J. Noh, B.R. Kim, G.J. Yoon, S.C.W. Jung, S.J. Kang, Kim, Microstructural effect on the photoelectrochemical performance of hematite-Fe2O3photoanode for water splitting. Electron. Mater. Lett. 8, 345–350 (2012)

    Article  CAS  Google Scholar 

  18. C.Y. Lee, L. Wang, Y. Kado, M.S. Killian, P. Schmuki, Anodic nanotubular/porous hematite photoanode for solar water splitting: substantial effect of iron substrate purity. ChemSusChem 7, 934–940 (2014)

    Article  CAS  Google Scholar 

  19. S.Z. Ajabshir, M. Baladi, M.S. Niasari, Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason. Sonochem. 72, 105420 (2021)

    Article  CAS  Google Scholar 

  20. S.Z. Ajabshir, M.S. Morassaei, O. Amiri, M.S. Niasari, Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram. Int. 46, 6095–6107 (2020)

    Article  CAS  Google Scholar 

  21. K. Sivula, F.L. Formal, M. Gratzel, WO3– Fe2O3 photoanodes for water splitting: A host scaffold, guest absorber approach. Chem. Mater. 21, 2862–2867 (2009)

    Article  CAS  Google Scholar 

  22. Y. Lin, S. Zhou, S.W. Sheehan, D. Wang, Nanonet-based hematite heteronanostructures for efficient solar water splitting. J. Am. Chem. Soc. 133, 2398–2401 (2011)

    Article  CAS  Google Scholar 

  23. S.Z. Ajabshir, S.A.H. Asil, M.S. Niasari, Recyclable magnetic ZnCo2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution. Ceram. Int. 47, 8959–8972 (2021)

    Article  CAS  Google Scholar 

  24. S.Z. Ajabshir, S.A.H. Asil, M.S. Niasari, Simple and eco-friendly synthesis of recoverable zinc cobalt oxide-based ceramic nanostructure as high-performance photocatalyst for enhanced photocatalytic removal of organic contamination under solar light. Sep. Purif. Technol. 267, 118667 (2021)

    Article  CAS  Google Scholar 

  25. T.S. Atabaev, Z. Piao, Y.H. Hwang, H.K. Kim, N.H. Hong, Bifunctional Gd2O3: Er3+ particles with enhanced visible upconversion luminescence. J. Alloys Compd. 572, 113–117 (2013)

    Article  CAS  Google Scholar 

  26. M. Ajmal, T.S. Atabaev, Facile fabrication and luminescent properties enhancement of bimodal Y2O3: Eu3+ particles by simultaneous Gd3+ codoping. Opt. Mater. 35, 1288–1292 (2013)

    Article  CAS  Google Scholar 

  27. Y.S. Hu, A.K. Shwarsctein, A.J. Forman, D. Hazen, J.N. Park, E.W. McFarland, Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 20, 3803–3805 (2008)

    Article  CAS  Google Scholar 

  28. J. Deng, J. Zhong, A. Pu, D. Zhang, M. Li, X. Sun, S.T. Lee, Ti-doped hematite nanostructures for solar water splitting with high efficiency. J. Appl. Phys. 112, 084312 (2012)

    Article  CAS  Google Scholar 

  29. A. Kay, I. Cesar, M. Grätzel, New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)

    Article  CAS  Google Scholar 

  30. S. Kumari, A.P. Singh, C. Tripathi, D. Chauhan, S. Dass, R. Shrivastav, V.R. Satsangi, Enhanced photoelectrochemical response of Zn-dotted hematite. Int. J. Photoenergy 2007, 1–7 (2007)

    Article  CAS  Google Scholar 

  31. S. Mohanty, J. Ghose, Studies on some α-Fe2O3 photoelectrodes. J. Phys. Chem. Solids 53, 81–91 (1992)

    Article  CAS  Google Scholar 

  32. W. Xu, W. Tian, L. Li, Two-Dimensional Nanostructured Metal Oxide/Sulfide Based Photoanode for Photoelectrochemical Water Splitting. Sol. RRL. (2020)

  33. S.Z. Ajabshir, M.S. Morassaei, M.S. Niasari, Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos. B. Eng. 167, 643–653 (2019)

    Article  CAS  Google Scholar 

  34. M.S. Morassaei, S.Z. Ajabshir, M.S. Niasari, Simple salt-assisted combustion synthesis of Nd2Sn2O7–SnO2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye. J. Mater. Sci.: Mater. Electron. 27, 11698–11706 (2016)

    CAS  Google Scholar 

  35. J. Yan, S. Yang, Z. Xie, X. Li, W. Zhou, X. Zhang, Y. Fang, S. Zhang, F. Peng, Heterostructured CoO/3D-TiO2 nanorod arrays for photoelectrochemical water splitting hydrogen production. J. Solid State Electrochem. 21, 455–461 (2017)

    Article  CAS  Google Scholar 

  36. Y.C. Chen, Y.C. Chang, Y.K. Hsu, Facile synthesis of ZnO nanoparticles on carol-like Cu2O nanowires for photoelectrochemical hydrogen generation. J. Alloys Compd. 729, 507–512 (2017)

    Article  CAS  Google Scholar 

  37. D. Kumar, R. Bai, S. Chaudhary, D.K. Pandya, Enhanced photoelectrochemical response for hydrogen generation in self-assembled aligned ZnO/PbS core/shell nanorod arrays grown by chemical bath deposition. Mater. Today Ener. 6, 105–114 (2017)

    Article  CAS  Google Scholar 

  38. A.K. Nayak, Y. Sohn, D. Pradhan, Facile green synthesis of WO3H2O nanoplates and WO3 nanowires with enhanced photoelectrochemical performance. Cryst. Growth Des. 17, 4949–4957 (2017)

    Article  CAS  Google Scholar 

  39. M. Allieta, M. Marelli, F. Malara, C.L. Bianchi, S. Santangelo, C. Triolo, A. Naldoni, Shaped-controlled silicon‐doped hematite nanostructures for enhanced PEC water splitting. Catal. Today 328, 43–49 (2019)

    Article  CAS  Google Scholar 

  40. A. Azad, S.J. Kim, Hematite-Based Photoelectrochemical Water Splitting: Hydrothermal and Layer-By-Layer Synthesis Methods. Sci. Adv. Mater. 8, 1426–1432 (2016)

    Article  CAS  Google Scholar 

  41. Y. Zheng, W. Wang, Electrospun nanofibers of Er3+-doped TiO2 with photocatalytic activity beyond the absorption edge. J. Solid State Chem. 210, 206–212 (2014)

    Article  CAS  Google Scholar 

  42. Z. Wei, Y. Li, S. Luo, C. Liu, D. Meng, M. Ding, G. Zeng, Hierarchical heterostructure of CdS nanoparticles sensitized electrospun TiO2 nanofibers with enhanced photocatalytic activity. Sep. Purif. Technol. 122, 60–66 (2014)

    Article  CAS  Google Scholar 

  43. K. Onozuka, B. Ding, Y. Tsuge, T. Naka, M. Yamazaki, S. Sugi, S. Shiratori, Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology 17, 1026 (2006)

    Article  CAS  Google Scholar 

  44. R. Bagherzadeh, M. Latifi, S.S. Najar, L. Kong, Experimental verification of theoretical prediction of fiber to fiber contacts in electrospun multilayer nano-microfibrous assemblies: Effect of fiber diameter and network porosity. J. Ind. Text. 43, 483–495 (2014)

    Article  Google Scholar 

  45. R. Bagherzadeh, M. Latifi, S.S. Najar, M.A. Tehran, M. Gorji, L. Kong, Transport properties of multi-layer fabric based on electrospun nanofiber mats as a breathable barrier textile material. Text. Res. J. 82, 70–76 (2012)

    Article  CAS  Google Scholar 

  46. H. Shao, X. Zhang, F. Chen, S. Liu, Y. Ji, Y. Zhu, Y. Feng, Preparation of α-Fe2O3 nanotubes via electrospinning and research on their catalytic properties. Appl. Phys. A 108, 961–965 (2012)

    Article  CAS  Google Scholar 

  47. A. Dhara, B. Show, A. Baral, S. Chabri, A. Sinha, N.R. Bandyopadhyay, N. Mukherjee, Core-shell CuO-ZnO p-n heterojunction with high specific surface area for enhanced photoelectrochemical (PEC) energy conversion. Sol. Energy 136, 327–332 (2016)

    Article  CAS  Google Scholar 

  48. Q. Wang, R. Liu, X. Shen, L. Zou, D. Wu, Mesoporous Iron Oxide Nanofibers and Their Loading Capacity of Curcumin. J. Nanosci. Nanotechnol. 14, 2871–2877 (2014)

    Article  CAS  Google Scholar 

  49. Z. Cao, M. Qin, B. Jia, Y. Gu, P. Chen, A.A. Volinsky, X. Qu, One pot solution combustion synthesis of highly mesoporous hematite for photocatalysis. Ceram. Int. 41, 2806–2812 (2015)

    Article  CAS  Google Scholar 

  50. L. Macera, G. Taglieri, V. Daniele, M. Passacantando, F. D’Orazio, Nano-sized Fe(III) oxide particles starting from an innovative and eco-friendly synthesis method. Nanomaterials 10, 323 (2020)

    Article  CAS  Google Scholar 

  51. N. Moreno, Image Processing with ImageJ. Optical Imaging Techniques in Cell Biology, 249–258 (2006)

  52. Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11, 2119–2125 (2011)

    Article  CAS  Google Scholar 

  53. S.Z. Ajabshir, M.S. Niasari, Preparation and characterization of nanocrystalline praseodymium oxide via a simple precipitation approach. J. Mater. Sci.: Mater. Electron. 26, 5812–5821 (2015)

    Google Scholar 

  54. S.Z. Ajabshir, M.S. Niasari, Synthesis of pure nanocrystalline ZrO2 via a simple sonochemical-assisted route. J. Ind. Eng. Chem. 20, 3313–3319 (2014)

    Article  CAS  Google Scholar 

  55. P. Wang, D. Wang, J. Lin, X. Li, C. Peng, X. Gao, C. Fan, Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device. ACS Appl. Mater. Interfaces 4, 2295–2302 (2012)

    Article  CAS  Google Scholar 

  56. A.M. Fox, Optical Properties of Solids (Oxford university press, New York, 2001), vol. 3

    Google Scholar 

  57. D.N. Muche, T.M.D. Santos, G.P. Leite, M.A. Melo Jr., R.V. Gonçalves, F.L. Souza, Tailoring hematite/FTO interfaces: New horizons for spin-coated hematite photoanodes targeting water splitting. Mat. Lett. 254, 218–221 (2019)

    Article  CAS  Google Scholar 

  58. J.Y. Kim, G. Magesh, D.H. Youn, J.W. Jang, J. Kubota, K. Domen, J.S. Lee, Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 3, 2681 (2013)

    Article  Google Scholar 

  59. W. Xia, J. Sun, X. Zeng, P. Wang, M. Luo, J. Dong, H. Yu, FeO-Based Hierarchical Structures on FTO Substrates and Their Photocurrent. ACS omega 5, 2205–2213 (2020)

    Article  CAS  Google Scholar 

  60. A. Queralto, S. Mathur, Photoelectrochemical response of Fe2O3 films reinforced with BiFeO3 nanofibers. MRS Commun. 1–5 (2018)

  61. T. Wang, M.C. Huang, F.W. Liu, Y.K. Hsieh, W.S. Chang, J.C. Lin, C.F. Wang, Interfacial phenomena in hematite photoanodes fabricated by directly associating iron oxide suspensions with FTO substrates using a dipping-annealing method. RSC Adv. 4, 4463–4471 (2014)

    Article  CAS  Google Scholar 

  62. S. Shen, J. Zhou, C.L. Dong, Y. Hu, E.N. Tseng, P. Guo, S.S. Mao, Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting. Sci. Rep. 4, 1–9 (2014)

    Article  Google Scholar 

  63. B.J. Rani, A. Anusiya, M. Praveenkumar, S. Ravichandran, R.K. Guduru, G. Ravi, R. Yuvakkumar, Ag implanted ZnO hierarchical nanoflowers for photoelectrochemical water-splitting applications. J. Mater. Sci.: Mater. Electron. 30, 731–745 (2019)

    CAS  Google Scholar 

  64. Q. Rui, L. Wang, Y. Zhang, C. Feng, B. Zhang, S. Fu, Y. Bi, Synergistic effects of P-doping and a MnO2 cocatalyst on Fe2O3 nanorod photoanodes for efficient solar water splitting. J. Mater. Chem. A 6, 7021–7026 (2018)

    Article  CAS  Google Scholar 

  65. K. Zhang, T. Dong, G. Xie, L. Guan, B. Guo, Q. Xiang, J.R. Gong, Sacrificial interlayer for promoting charge transport in hematite photoanode. ACS Appl. Mater. Interfaces 9, 42723–42733 (2017)

    Article  CAS  Google Scholar 

  66. S.H. Kang, J.Y. Kim, Y. Kim, H.S. Kim, Y.E. Sung, Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells. J. Phys. Chem. C 111, 9614–9623 (2007)

    Article  CAS  Google Scholar 

  67. E.P. Randviir, C.E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal. Methods 5, 1098–1115 (2013)

    Article  CAS  Google Scholar 

  68. A.B. Rohom, P.U. Londhe, N.B. Chaure, Rapid thermal processed CuInSe2 layers prepared by electrochemical route for photovoltaic applications. J. Electrochem. Soc. 165, H3051 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Viswanathamurthi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryamathi, M., Ramachandran, K., Viswanathamurthi, P. et al. Hematite nanofibers based photoanode for effective photoelectrochemical water oxidation. J Mater Sci: Mater Electron 33, 9180–9193 (2022). https://doi.org/10.1007/s10854-021-07212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07212-7

Navigation