Skip to main content

Advertisement

Log in

Physical properties and microstructural characterization of copper–ZrO2/YSZ nano-composites produced via double-pressing double-sintering method (DPDS)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research study, Cu–ZrO2/YSZ nanocomposites were synthesized with different volume percentages of stabilized yttrium–zirconia (YSZ) by double-pressing double-sintering method (DPDS). YSZ nanoparticles with specific 1, 2, and 3 vol% were distributed in the Cu powder by planetary ball mill including alumina milling balls of 5 mm diameter. The composite powder obtained from planetary ball mill was then pressed in a uniaxial die of stainless steel under the optimum force of 1000 MPa. Then the pressed pallets pre-sintered and sintered under argon atmosphere by tube furnace at 300–700 °C and 800–950 °C, respectively. The distribution of the reinforcing particles was studied using scanning electron microscopy. Study of the nano-composite microstructures showed that the reinforcing particles were uniformly distributed in the matrix. The optimum amount of the YSZ nanoparticles was determined to be 3%vol. The effects of reinforcing particles and secondary pressing–sintering method on microstructure, density, electrical conductivity, compressive strength, and hardness of nano-composites were also investigated. According to the results, the optimum compression pressure, pre-sintering and sintering temperatures for composites were 1000 MPa, 400 °C, and 850 °C, respectively. Using DPDS method led to the enhancements of about 6% in relative density, 100% in hardness, 8% in electrical conductivity, 70% in abrasion resistance, and 43% compressive strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Clyne, P. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  2. A. Fathy, O. Elkady, A. Abu-Oqail, Synthesis and characterization of Cu–ZrO2 nanocomposite produced by thermochemical process. J. Alloy. Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.05.209

    Article  Google Scholar 

  3. M. Akbarpour et al., Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles. Mater. Sci. Eng. A 568, 33–39 (2013)

    Article  CAS  Google Scholar 

  4. F. Akhtar et al., Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites. Mater. Charact. 60(4), 327–336 (2009)

    Article  CAS  Google Scholar 

  5. M. Khaloobagheri, B.S. Abdollahi, The effect of milling time on properties and microstructure of Cu-yttria stabilized zirconia composites fabricated by powder metallurgy. J. Mater. Sci. Appl. 1, 78–84 (2015)

    Google Scholar 

  6. G.C. Efe, M. Ipek, S. Zeytin, C. Bindal, An investigation of the effect of the SiC particle size on the Cu–SiC composites. Compos. B Eng. 43(4), 1813–1822 (2012)

    Article  Google Scholar 

  7. G.C. Efe, T. Yener, I. Altinsoy, M. Ipek, S. Zeytin, C. Bindal, The effect of the sintering temperature on the some properties of the Cu–SiC composite. J. Alloy. Compd. 509(20), 6036–6042 (2011)

    Article  Google Scholar 

  8. M. Akbarpour et al., Effect of nanoparticle content on the microstructural and mechanical properties of nano-SiC dispersed bulk ultra-grained Cu matrix composites. Mater. Des. 52, 881–887 (2013)

    Article  CAS  Google Scholar 

  9. R. Ritasalo et al., Microstructural and mechanical characteristics of Cu–Cu2O composites compacted with pulsed electric current sintering and hot iso-static pressing. Compos. Appl. Sci. Manufact. 45, 61–69 (2013)

    Article  CAS  Google Scholar 

  10. R.M. German, Powder Metallurgy and Particulate. Metal Powder (Princeton, Industries Federation, 2005)

    Google Scholar 

  11. F. Shehata et al., Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing. Mater. Des. 30(7), 2756–2762 (2009)

    Article  CAS  Google Scholar 

  12. A. Fathy et al., Compressive and wear resistance of nano-metric alumina reinforced copper matrix composites. Mater. Design (1980–2005) 36, 100–107 (2012)

    Article  CAS  Google Scholar 

  13. G. Lepure et al., Effect of ZrO2 particles upon Cu-ZrO2 material used for the spot welding electrodes. Metall. Int. 14(6), 21–25 (2009)

    Google Scholar 

  14. R. Shimansky, Double Press and Double Sinter in Metal Powder Report (Pennsylvania, Bucknell, 1992)

    Google Scholar 

  15. N. Chawla, K. Chawla, Metal-matrix. J. Min. Met. Mater. Soc. 58(11), 67–70 (2006)

    Article  CAS  Google Scholar 

  16. S.A.A. Alem, R. Latifi, S. Angizi, N. Mohamadbeigi, M. Rajabi, E. Ghasali, Y. Orooji, Development of metal matrix composites and nanocomposites via double-pressing double-sintering (DPDS) method. Mater. Today Commun. (2020). https://doi.org/10.1016/j.mtcomm.2020.101245

    Article  Google Scholar 

  17. I. Celikyurek et al., Microstructure, properties and wear behaviors of (Ni3Al) P reinforced Cu matrix composites. J. Mater. Sci. Technol. 27(10), 937–943 (2011)

    Article  CAS  Google Scholar 

  18. J. Tu et al., Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing. Mater. Lett. 52(6), 448–452 (2002)

    Article  CAS  Google Scholar 

  19. W.F. Hosford, Mechanical Behavior of Materials (Cambridge University Press, New York, 2010)

    Google Scholar 

  20. G.E. Dieter, Mechanical Metallurgy (Mc-Graw Hill Inc, New York, 1986)

    Google Scholar 

  21. A. Santos-Beltrn et al., Mechanical & microstructural characterizationof the dispersion of the strengthened-AlC system nanocomposites. J. Alloys Compd. 489, 626–630 (2010)

    Article  Google Scholar 

  22. R. Casati, M. Vedani, The metal matrix composites reinforced by nanoparticles. A review. Metals 4, 65–83 (2014)

    Article  Google Scholar 

  23. M. Rajabi, M.M. Khodai, N. Askari, Microwave-assisted sintering of Al–ZrO2 nano-composites. J. Mater. Sci. Mater. Electron. 25, 4577–4584 (2014)

    Article  CAS  Google Scholar 

  24. Z. Asadipanah, M. Rajabi, Production of Al–ZrB2 nano-composites by microwave sintering process. J. Mater. Sci. Mater. Electron. 26(8), 6148–6156 (2015)

    Article  CAS  Google Scholar 

  25. A. Yarahmadi, M.T. Noghani, M. Rajabi, Effect of carbon nanotube (CNT) content and double-pressing double sintering (DPDS) method on the tensile strength and bending strength behavior of CNT-reinforced aluminum composites. J. Mater. Res. 31(24), 3860–3868 (2016)

    Article  CAS  Google Scholar 

  26. M.M. Khodai, M. Rajabi, N. Askari, B. Mirhadi, H. Oveisi, Microwave sintering of aluminum-zirconia nano-composites. In: 2nd International Advances in Applied Physics and Materials Science Congress, Antalya, pp. 125–132 (2012)

  27. M. Rajabi, M. Safaei, Synthesis of Al-SiC composite material by double-pressing double–sintering method. In: 4th Annual Congress of Iranian Metallurgy Engineering Society, Tehran, pp. 995–1004 (1999)

  28. A. Yarahmadi, M. Rajabi, M. Talafi Noghani, R. Taghiabadi, Synthesis of aluminum–CNTs composites using double-pressing double-sintering method. J. Nanostruct. 9(1), 95–103 (2019)

    Google Scholar 

  29. M. Darabi, M. Rajabi, Electrical and mechanical properties of Cu–CNT nanocomposites sintered by microwave technique. Metall. Mater. Eng. 23(4), 303–317 (2017)

    Article  Google Scholar 

  30. D. Marjan, M. Rajabi, Synthesis of Cu-CNTs, nanocomposites via double pressing double sintering method. Metall. Mater. Eng. 31(4), 319–334 (2017)

    Google Scholar 

  31. D. Marjan, M. Rajabi, B. Junipour, M. Talafi-Noghani, The effect of sintering temperature on Cu–CNTs nano-composites properties produced by PM method. Sci. Sinter. J. 50, 477–486 (2018)

    Article  Google Scholar 

  32. M.R. Pouyani, M. Rajabi, Microwave-assisted synthesis of Cu-ZrB2 MM Nano-composite using double pressing double sintering method. J. Mater. Sci. 30, 266–276 (2019)

    Google Scholar 

  33. M. Darabi, N. Nasiri, M. Rajabi, Microstructural, mechanical and thermal properties of microwave sintered Cu-MWCNT nano-composites. J. Alloy. Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.153675

    Article  Google Scholar 

  34. M. Rajabi, R. Moradiclardeh, S.M. Mosavian, Synthesis of Al– ZrO2 composite materials by the stir-casting method. In: Iran International Aluminum Conference, Tehran, 2009.

Download references

Acknowledgements

The authors would like to thank INSF of Iran (Contract Number: 93006640) for the full financial support of the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rajabi.

Ethics declarations

Conflict of interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, A., Rajabi, M., Baghshahi, S. et al. Physical properties and microstructural characterization of copper–ZrO2/YSZ nano-composites produced via double-pressing double-sintering method (DPDS). J Mater Sci: Mater Electron 32, 28307–28320 (2021). https://doi.org/10.1007/s10854-021-07207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07207-4

Navigation