Skip to main content
Log in

Microwave-assisted sintering of Al–ZrO2 nano-composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this project, nano-ZrO2 particles were dispersed in aluminum powder by a Y-shape mixer. The particle size of ZrO2 powder was <40 nm and the amount of ZrO2 reinforcement varies from 3 to 15 %. The mixed powders were compacted. Subsequently the compacted discs were sintered both in the microwave oven and in the conventional muffle furnace. Using microwave-assisted sintering method led to the reduction of sintering time to 15 min. Micro-structural studies of the nano-composites indicated that there is relatively uniform distribution of the reinforcement in the matrix. Aluminum metal matrix nano-composites samples were characterized by micro-hardness measurements, optical microscopy, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. Mechanical properties reveal that the presence of nano-ZrO2 particles has improved significantly the strength. The optimum amount of ZrO2 reinforcement has been determined to be 6 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Rajabi, Characterization of Al–SiC composite materials produced by double pressing–double sintering method. Int. J. Eng. Sci. 14(2),89–110, (Spring 2003)

  2. M. Rajabi, M.M. Khodai, N. Askari, B. Mirhadi, H. Oveisi, in Evaluation of Time Effect on Mechanical Properties of AlZrO 2 Nano-Composites Produced by Microwave Sintering. Iran International Aluminum Conference, Arak, Iran (2012)

  3. M.M. Khodai, M. Rajabi, N. Askari, B. Mirhadi, H. Oveisi, in Microwave Sintering of aluminumZirconia nano-Composites, 2nd International Advances in Applied Physics and Materials Science Congress, Antalya, Turkey (2012)

  4. M. Rajabi, R. Moradiclardeh, S.M. Mosavian, in Synthesis of AlZrO 2 Composite Materials by the Stir-Casting Method, Iran International Aluminum Conference, Tehran, Iran (2009)

  5. A.J. Cheng, D.A. Zhang, R. Roy, Microwave reactive sintering to fully transparent aluminum oxy nitride (ALON) ceramics. J. Mater. Sci. Lett. 20, 77–79 (2001)

    Article  Google Scholar 

  6. T.T. Meek, C.E. Holcomband, N. Dykes, Microwave sintering of some oxide materials using sintering aids. J. Mater. Sci. Lett. 6(9), 1060–1062 (1987)

    Article  Google Scholar 

  7. H.D. Kimrey, J.O. Kiggans, M.A. Janney, R.L. Beatty, Microwave sintering of zirconia-toughened alumina composites in microwave processing of materials II. J. Mater. Res. Soc. Symp. Proc. 189, 243–256 (1991)

    Article  Google Scholar 

  8. M.O. Mizuno, Sintering of traditional ceramics by microwave. J. Ceram. Trans. 111, 277–285 (2001)

    Google Scholar 

  9. Z. Xie, J. Yang, X. Huang, Y. Huang, Microwave processing and properties of ceramics with different dielectric loss. J. Mater. Sci. Eng. 19, 381–387 (1999)

    Google Scholar 

  10. M. Elsagh, M. Rajabi, E. Amini, Characterization of SrAl2O4: Eu2+, Dy3+ phosphor nano-powders produced by microwave synthesis route. J. Mater. Electron. 25, 1612–1619 (2014). doi:10.1007/s10854-014-1773-x

    Article  Google Scholar 

  11. S.J. Garcia, C.S.L. Cajun, R. Fuentes, V.M. Castano, Synthesis of an Al–ZrO2 composite by infiltration of Zr-chelates into an Al matrix. Mater. Res. Innovat. 5(3), 199–204 (2003)

  12. M.N. Rahaman, Ceramic Processing and Sintering, Dekker, 2nd edn (2003)

  13. F. Hajiakbari, Z. Bagherifard, H. Sarpoolaki, B. Eftekhari Yekta, Microstructure evaluation of Al–Mg–SiC composite through sintering by microwave and electrical furnace. J. Mater. Eng. 1(3), 219–230 (2009)

    Google Scholar 

  14. M.K. Surappa, in Aluminum Matrix Composites: Challenges and Opportunities, Sadhana Printed in India, vol. 28, parts 1 and 2 (2003) pp. 319–334

  15. ASM Handbook, vol. 21, Composites (ASM International, USA, 2001)

  16. T. Ebadzadeh, M. Valefi, Microwave-assisted sintering of zircon. J.Alloys Compd. 448, 246–249 (2008)

    Article  Google Scholar 

  17. M. Rajabi, M. Safaei, in Synthesis of AlSiC Composite Material by Double-Pressing Double-Sintering Method, 4th Annual Congress of Iranian Metallurgy Engineering Society (1999) pp. 995–1004

  18. M.A. Baghchesara, H. Abdizadeh, H.R. Baharvandi, Fractography of stir casting Al–ZrO2 composites. Iran. J. Sci. Technol. Trans. B Eng. 33(B5), 453–462 (2009)

    Google Scholar 

  19. S. Suresh, A. Mortensen, A. Needleman, in Fundamentals of Metal-Matrix Composites, Butterworth-Heinemann (1993) pp. 1–326

  20. J.M. Torralbaa, C.E. da Costab, F. Velasco, P/M aluminum matrix composites: an over view. J. Mater. Process. Technol. 133, 203–206 (2003)

    Article  Google Scholar 

  21. J. Hemanth, Development and property evaluation of aluminum alloy reinforced with nano-ZrO2 metal matrix composites (NMMCs). Mater. Sci. Eng., A 507, 110–113 (2009)

    Article  Google Scholar 

  22. R.F. Ramirez, A.P. Gonzalez, V.M.C. Meneses, Improved wear resistance of an aluminum–zirconia composite. Metal Sci. Heat Treat. 52(7–8), 368–370 (2010)

    Article  Google Scholar 

  23. M.T. Abou-El-Khair, A. AbdelAli, Erosion–corrosion and surface protection of A356 Al/ZrO2 composites produced by vortex and squeeze casting. Mater. Sci. Eng., A 454–455, 156–163 (2007)

    Article  Google Scholar 

  24. D.R. Ye, J.H. Hu, Hand book of thermodynamics data for in organic substance (Metallurgy Industry Press, Beijing, 2002), pp. 27–72

    Google Scholar 

  25. O. Knacke, Thermo-chemical properties of inorganic substances (Springer-Verlag, Berlin, 1991), pp. 30–150

    Google Scholar 

  26. H. Zhu, J. Min, J. Li, Y. Ai, L. Ge, H. Wang, In situ fabrication of (α-Al 2O3 + Al 3Zr)/Al composites in an Al–ZrO2 system. Compos. Sci. Technol. 70(15), 2183–2189 (2010)

    Article  Google Scholar 

  27. J.K. Jain, S.P. Gupta, Inter-metallic compound formation in the Zr–Al–Si ternary system. Mater. Charact. 49, 139–148 (2003)

    Article  Google Scholar 

  28. A.S.M. Handbook, Alloy phase diagram, vol. 3 (ASM International, USA, 1992)

    Google Scholar 

  29. A.S.M. Handbook, Powder metallurgy, vol. 7 (ASM International, USA, 1984)

    Google Scholar 

  30. T.S. Srivatsan, I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Processing techniques for particulate-reinforced metal aluminum matrix composites. J. Mater. Sci. 26, 5965–5978 (1991)

    Article  Google Scholar 

  31. D.B. Miracle, Metal matrix composites—from science to technological significance. Compos. Sci. Technol. 65, 2526–2540 (2005)

    Article  Google Scholar 

  32. A. Erol, A. Yonetken, I. Yildiz, M. Erdogan, in Fabrication of Ni Metal Matrix Composites Reinforced with SiO 2 by Microwave Sintering, 5th International Advanced Technologies Symposium (IATS’09), Karabuk, Turkey, May 13–15 (2009)

  33. P.G. Karandikar, M.K. Aghajanian, D. Agrawal, J. Cheng, Microwave assisted (MASS) processing of metal–ceramic and reaction-bonded composites. Ceram. Eng. Sci. Proc. 27(2), 435–446 (2007)

    Google Scholar 

  34. H.G. Zhu, Y.L. Ai, J. Min, Q. Wu, H.Z. Wang, Dry sliding wear behavior of Al-based composites fabricated by exothermic dispersion reaction in an Al–ZrO2–C system. Wear 268, 1465–1471 (2010)

    Article  Google Scholar 

  35. D.R. Sahu, B.K. Roul, S.K. Singh, R.N.P. Choudhury, Studies on dielectric properties of Al–Zr oxide composites sintered by thermal plasma. Mater. Lett. 56, 817–821 (2002)

    Article  Google Scholar 

  36. P.V. Krakhmalev, E. Strom, M. Sundberg, C. Li, Microstructure, hardness and indentation toughness of C40 Mo (Si, Al)2/ZrO2 composites prepared by SPS of MA powders. Scripta Mater. 48, 725–729 (2003)

    Article  Google Scholar 

  37. P.V. Krakhmalev, Preparation of Mo(Si, Al)2–ZrO2 nano-composite powders by mechanical alloying. Int. J. Refract Metal Hard Mater. 22, 205–209 (2004)

    Article  Google Scholar 

  38. Z. Wang, X. Liu, Reaction in the Al–ZrO2–C system. J. Mater. Sci. 40, 4727–4735 (2005)

    Article  Google Scholar 

  39. E. Bayraktar, D. Katundi, Development of a new aluminum matrix composite reinforced with iron oxide (Fe 3O4). J. Achiev. Mater. Manuf. Eng. 38, 7–14 (2010)

    Google Scholar 

  40. S. Leparoux, S. Vaucher, O. Beffort, Assessment of microwave heating for sintering of Al/SiC and for in situ synthesis of TiC. Adv. Eng. Mater. 8(4), 449–453 (2003)

  41. Z. Huanga, M. Gotohb, Y. Hiroseb, Improving sinterability of ceramics using hybrid microwave heating. J. Mater. Process. Technol. 209, 2446–2452 (2009)

    Article  Google Scholar 

  42. K. Rajkumar, S. Aravindan, Microwave sintering of copper–graphite composites. J. Mater. Process. Technol. 209, 5601–5605 (2009)

    Article  Google Scholar 

  43. E. Brevala, J.P. Chenga, D.K. Agrawala, P. Gigla, M. Dennisb, R. Roya, A.J. Papworth, Comparison between microwave and conventional sintering of WC/Co composites. Mater. Sci. Eng., A 391, 285–295 (2005)

    Article  Google Scholar 

  44. Y.V. Naidich, V.S. Zhuravlev, I.I. Gab, B.D. Kostyuk, V.P. Krasovskyy, A.A. Adamovskyy, NYu. Taranets, Liquid metal wettability and advanced ceramic brazing. J. Eur. Ceram. Soc. 28, 717–728 (2008)

    Article  Google Scholar 

  45. R. Bauri, Trans. the Indian Inst. Metals 62(4–5), 391–392 (2008)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Deputy for Research and Technology of Imam Khomeini International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rajabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabi, M., Khodai, M.M. & Askari, N. Microwave-assisted sintering of Al–ZrO2 nano-composites. J Mater Sci: Mater Electron 25, 4577–4584 (2014). https://doi.org/10.1007/s10854-014-2206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2206-6

Keywords

Navigation