Skip to main content
Log in

Solution combustion synthesis of iron tungstate nanoparticles for photoelectrochemical water splitting towards oxygen evolution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Iron tungstate (FeWO4) nanoparticles were prepared by simple solution combustion technique. The preparation method discloses the first report on the synthesis of iron tungstate nanoparticles. The large-scale synthesis of iron tungstate nanoparticles was achieved and characterized by analytical instruments. The powder XRD patterns authenticated the presence of monoclinic phase of FeWO4 with an average crystalline size of 19nm from Scherrer equation. The optical properties were deliberately assessed with vibrational spectroscopy which predicted the optical band gap of about 2.2 eV. DC and AC conductivity studies suggested that the prepared nanoparticles exhibit excellent conductivity. Furthermore, the semiconducting nature was proved with their temperature-dependent IV curves. The photoconductivity curves serve to be an evident for excellent behavior of light-induced charge carrier’s increment on the prepared iron tungstate nanoparticles. Considerate the interactions between the electrode substrate and nanostructures being an important research in determining the inherent activity of the nanostructures. Photoelectrochemical water splitting towards oxygen evolution was performed on varying the working electrode substrates (Nickel, Platinum, stainless steel, copper) in which higher photon to oxygen conversion rates were observed to be in the increasing order of Pt > SS > Ni > Cu. Herein, the prepared photo anode will revolutionize the design of tandem cells for efficient water splitting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Pan, Q. Wang, Molecules 20, 20499 (2015)

    Article  CAS  Google Scholar 

  2. N. Kirkaldy, G. Chisholm, J.J. Chen, L. Cronin, Chem. Sci. 9, 1621 (2018)

    Article  CAS  Google Scholar 

  3. N.D. Diby, Y. Duan, P.A. Grah, F. Cai, Z. Yuan, J. Mater. Sci. Mater. Electron. 29, 20236 (2018)

    Article  CAS  Google Scholar 

  4. S.C. Abbas, J. Wu, Y. Huang, D.D. Babu, G. Anandhababu, M. Arsalan Ghausi, M. Wu, Y. Wang, Int. J. Hydrog. Energy 43, 16–23 (2018)

    Article  CAS  Google Scholar 

  5. F.E. Osterloh, Chem. Soc. Rev. 42, 2294 (2013)

    Article  CAS  Google Scholar 

  6. R. Ma, S. Wu, H. Yu, S. Chen, A. Sinha, X. Quan, J. Mater. Sci. Mater. Electron. 29, 12700 (2018)

    Article  CAS  Google Scholar 

  7. B.J. Rani, G. Ravi, S. Ravichandran, V. Ganesh, F. Ameen, A. Al-Sabri, R. Yuvakkumar, Appl. Nanosci. 8, 1241 (2018)

    Article  CAS  Google Scholar 

  8. M.M. Momeni, Y. Ghayeb, J. Mater. Sci. Mater. Electron. 27, 3318 (2016)

    Article  CAS  Google Scholar 

  9. L. Liu, J. Hensel, R.C. Fitzmorris, Y. Li, J.Z. Zhang, J. Phys. Chem. Lett. 1, 155 (2010)

    Article  CAS  Google Scholar 

  10. J. Huang, S. Liu, L. Kuang, Y. Zhao, T. Jiang, S. Liu, X. Xu, J. Environ. Sci. (China) 25, 2487 (2013)

    Article  CAS  Google Scholar 

  11. H. Kim, K. Yong, ACS Appl. Mater. Interfaces 5, 13258 (2013)

    Article  CAS  Google Scholar 

  12. V. Nair, C.L. Perkins, Q. Lin, M. Law, Energy Environ. Sci. 9, 1412 (2016)

    Article  CAS  Google Scholar 

  13. B.D. Alexander, P.J. Kulesza, I. Rutkowska, R. Solarska, J. Augustynski, J. Mater. Chem. 18, 2298 (2008)

    Article  CAS  Google Scholar 

  14. J. Guo, X. Zhou, Y. Lu, X. Zhang, S. Kuang, W. Hou, J. Solid State Chem. 196, 550 (2012)

    Article  CAS  Google Scholar 

  15. S. Kang, Y. Li, M. Wu, M. Cai, P.K. Shen, Int. J. Hydrog. Energy 39, 16081 (2014)

    Article  CAS  Google Scholar 

  16. N. Goubard-Bretesché, O. Crosnier, G. Buvat, F. Favier, T. Brousse, J. Power Sour. 326, 695 (2016)

    Article  Google Scholar 

  17. H.W. Shim, I.S. Cho, K.S. Hong, W.I. Cho, D.W. Kim, Nanotechnology 21, 465602 (2010)

    Article  Google Scholar 

  18. Y.X. Zhou, H. Bin Yao, Q. Zhang, J.Y. Gong, S.J. Liu, S.H. Yu, Inorg. Chem. 48, 1082 (2009)

    Article  CAS  Google Scholar 

  19. Y. Ma, Y. Guo, H. Jiang, D. Qu, J. Liu, W. Kang, Y. Yi, W. Zhang, J. Shi, Z. Han, New J. Chem. 39, 5612 (2015)

    Article  CAS  Google Scholar 

  20. C.G. Zoski (ed.), Handbook of Electrochemistry, 1st edn. (Elsevier, Amsterdam, 2007)

  21. J.L. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Angew. Chem.-Int. Ed. 44, 2132–2135 (2005)

    Article  CAS  Google Scholar 

  22. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 1980)

    Google Scholar 

  23. S. Barnartt, J. Electrochem. Soc. 106, 991–994 (1959)

    Article  CAS  Google Scholar 

  24. J.D. Benck, B.A. Pinaud, Y. Gorlin, T.F. Jaramillo, PLOS One 9(10), ee107942 (2014)

    Article  Google Scholar 

  25. O. Thoda, G. Xanthopoulou, G. Vekinis, A. Chroneos, Adv. Eng. Mater. 20, 1 (2018)

    Article  Google Scholar 

  26. P. Scherrer, Mathematisch-Physikalische Klasse (Springer, Berlin, 1918), pp. 98–100

    Google Scholar 

  27. J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  28. V. Uvarov, I. Popov, Mater. Charact. 85, 111 (2013)

    Article  CAS  Google Scholar 

  29. K. Sieber, K. Kourtakis, R. Kershaw, K. Dwight, A. Wold, Mater. Res. Bull. 17, 721–725 (1982)

    Article  CAS  Google Scholar 

  30. E. Schmidbauer, U. Schanz, F.J. Yu, Phys.: Condens. Matter 3, 5341–5352 (1991)

    CAS  Google Scholar 

  31. S. Sagadevan, Appl. Nanosci. 4, 325–329 (2014)

    Article  Google Scholar 

  32. S. Sagadevan, C. Arunseshan, Appl. Nanosci. 4, 179–184 (2014)

    Article  Google Scholar 

  33. S. Sagadevan, J. Podder, I. Das, J. Mater. Sci.: Mater. Electron. 27, 9885–9890 (2016)

    CAS  Google Scholar 

  34. J. Lisa Enman, A.E. Vise, M.B. Stevens, S.W. Boettcher, Chem. Phys. Chem. (2019). https://doi.org/10.1002/cphc.201900511

    Article  Google Scholar 

  35. S.M. Abdelbasir, A.M. Elseman, F.A. Harraz, Y.M.Z. Ahmed, S.M. El-Sheikh, M.M. Rashad, New J. Chem. 45, 3150 (2021)

    Article  CAS  Google Scholar 

  36. S.M. AlShehri, J. Ahmed, T. Ahamad, P. Arunachalam, T. Ahmad, A. Khan, RSC Adv. 7, 45615 (2017)

    Article  CAS  Google Scholar 

  37. M. Athar, M. Fiaz, M. Asim Farid, M. Tahir, M. Adnan Asghar, S. Hassan, M. Hasan, ACS Omega 6(11), 7334–7341 (2021)

    Article  CAS  Google Scholar 

  38. F. Shen, Z. Wang, Y. Wang, G. Qian, M. Pan, L. Luo, G. Chen, H. Wei, S. Yin, Nano Res. (2021). https://doi.org/10.1007/s12274-021-3548-z

    Article  Google Scholar 

  39. S.Y. Jeong, J. Song, S. Lee, Appl. Sci. 8, 1388 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siva Chidambaram or Krithikadevi Ramachandran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chidambaram, S., Ramachandran, K., Gaidi, M. et al. Solution combustion synthesis of iron tungstate nanoparticles for photoelectrochemical water splitting towards oxygen evolution. J Mater Sci: Mater Electron 33, 9134–9143 (2022). https://doi.org/10.1007/s10854-021-07146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07146-0

Navigation