Skip to main content
Log in

Construction of Cu2+-doped CeO2 nanocrystals hierarchical hollow structure and its enhanced photocatalytic performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu2+-doped CeO2@mSiO2(CDC@mSiO2) samples with hollow structure were prepared by calcining Cu2+-doped cerium-based metal–organic framework (UiO-66 nanocrystals) precursor coated with mesoporous silica (mSiO2). BET analysis shows that Cu2+-doped CeO2@mSiO2 has a mesoporous structure and a large specific surface area (397.7 m2/g), which can provide more active sites for photocatalytic reactions. Ultraviolet absorption spectrum and PL spectrum show that the introduction of Cu2+ makes the absorption edge of the sample red-shift and accelerate the electron–hole separation efficiency. Cu2+ doping makes CeO2 produce more oxygen vacancies, which promotes photocatalysis. The Cu2+-doped CeO2@mSiO2 sample has the best photodegradation efficiency. Under simulated sunlight, the degradation rate of methyl orange within 2 h is 92.6%, and the photocatalytic rate constant is 0.0221/min. After 4 cycles of experiments, it still has excellent photocatalytic activity. Based on the characterization analysis and experimental results, the degradation mechanism of methyl orange is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.S. Chang, Streamlined life cycle CO2 emission assessment of sewage treatment in taiwan. Sains Malays. 44, 1715–1720 (2015)

    CAS  Google Scholar 

  2. Y.F. Wang, L. Yan, J. Li et al., A review of technology for small sewage treatment: the Chinese perspective. Oxid. Commun. 39, 275–284 (2016)

    CAS  Google Scholar 

  3. X. Xiao, Y.H. Wang, Q. Bo et al., One-step preparation of sulfur-doped porous g-C3N4 for enhanced visible light photocatalytic performance. Dalton Trans. 49, 8041–8050 (2020)

    Article  CAS  Google Scholar 

  4. Z.L. Ni, F. Dong, H.W. Huang et al., New insights into how Pd nanoparticles influence the photocatalytic oxidation and reduction ability of g-C3N4 nanosheets. Catal. Sci. Technol. 6, 6448–6458 (2016)

    Article  CAS  Google Scholar 

  5. Q.Q. Du, W.P. Wang, Y.Z. Wu et al., Novel carbon dots/BiOBr nanocomposites with enhanced UV and visible light driven photocatalytic activity. RSC Adv. 5, 31057–31063 (2015)

    Article  CAS  Google Scholar 

  6. A.Y. Ahmed, T.A. Kandiel, I. Ivanova et al., Photocatalytic and photoelectrochemical oxidation mechanisms of methanol on TiO2 in aqueous solution. Appl. Surf. Sci. 319, 44–49 (2014)

    Article  CAS  Google Scholar 

  7. S. Ahmed, D.K. Macharia, B. Zhu, Blue/red light-triggered reversible color switching based on CeO2-x nanodots for constructing rewritable smart fabrics. Nanoscale 12, 10335–10346 (2020)

    Article  CAS  Google Scholar 

  8. Y. Zhao, T. Chen, R. Ma et al., Synthesis of flower-like CeO2/BiOCl heterostructures with enhanced ultraviolet light photocatalytic activity. Micro Nano Lett. 13, 1394–1398 (2018)

    Article  CAS  Google Scholar 

  9. E.M. Seftel, M.C. Puscasu, M. Mertens, Assemblies of nanoparticles of CeO2-ZnTi-LDHs and their derived mixed oxides as novel photocatalytic systems for phenol degradation. Appl. Catal. B 150, 157–166 (2014)

    Article  CAS  Google Scholar 

  10. C. Lai, F.H. Xu, M.M. Zhang et al., Facile synthesis of CeO2/carbonate doped Bi2O2CO3 Z-scheme heterojunction for improved visible-light photocatalytic performance: photodegradation of tetracycline and photocatalytic mechanism. J. Colloid Interface Sci. 588, 283–294 (2021)

    Article  CAS  Google Scholar 

  11. Y. Wang, X. Bai, F. Wang, S. Kang, C. Yin, X. Li et al., Nanocasting synthesis of chromium doped mesoporous CeO2 with enhanced visible-light photocatalytic CO2 reduction performance. J. Hazard. Mater. 372, 69–76 (2019)

    Article  CAS  Google Scholar 

  12. X.L. Zhang, K. Li, W.Y. Shi, Baize-like CeO2 and NiO/CeO2 nanorod catalysts prepared by dealloying for CO oxidation. Nanotechnology 28, 045602 (2017)

    Article  CAS  Google Scholar 

  13. S. Mansingh, D. Kandi, K.K. Das et al., A mechanistic approach on oxygen vacancy-engineered CeO2 nanosheets concocts over an oyster shell manifesting robust photocatalytic activity toward water oxidation. ACS Omega 5, 9789–9805 (2020)

    Article  CAS  Google Scholar 

  14. H.T. Wang, Y. Xue, B.H. Zhu et al., CeO2 nanowires stretch-embedded in reduced graphite oxide nanocornposite support for Pt nanoparticles as potential electrocatalyst for methanol oxidation reaction. Int. J. Hydrogen Energy 42, 20549–20559 (2017)

    Article  CAS  Google Scholar 

  15. B.Y. Ren, P. Sudarsanam, A.E. Kandjani et al., Electrochemical detection of as (III) on a manganese oxide-ceria (Mn2O3/CeO2) nanocube modified Au electrode. Electroanalysis 30, 928–936 (2018)

    Article  CAS  Google Scholar 

  16. Z.J. Yang, L. Liu, H. Liang et al., One-pot hydrothermal synthesis of CeO2 hollow microspheres. J. Cryst. Growth 312, 426–430 (2010)

    Article  CAS  Google Scholar 

  17. Z. Jiang, H.Y. Sun, Z.H. Qin et al., Synthesis of novel ZnS nanocages utilizing ZIF-8 polyhedral template. Chem. Commun. 48, 3620–3622 (2012)

    Article  CAS  Google Scholar 

  18. H.J. Lee, W. Cho, M. Oh, Advanced fabrication of metal-organic frameworks: template-directed formation of polystyrene@ZIF-8 core-shell and hollow ZIF-8 microspheres. Chem. Commun. 48, 221–223 (2012)

    Article  CAS  Google Scholar 

  19. Y. Tao, H. Wang, Y.P. Xia et al., Preparation of shape-controlled CeO2 nanocrystals via microwave-assisted method. Mater. Chem. Phys. 124, 541–546 (2010)

    Article  CAS  Google Scholar 

  20. D. Lestari, I. Nurhasanah, Z. Arifin, Changes in UV-absorption properties of CeO2 nanoparticles solution caused by X-rays and gamma-rays radiation. Adv. Sci. Lett. 23, 6585–6588 (2017)

    Article  Google Scholar 

  21. Q. Fang, X. Liang, CeO2-Al2O3, CeO2-SiO2, CeO2-TiO2 core-shell spheres: formation mechanisms and UV absorption. RSC Adv. 2, 5370–5375 (2012)

    Article  CAS  Google Scholar 

  22. G.P. He, H.Q. Fan, Z.W. Wang, Enhanced optical properties of heterostructured ZnO/CeO2 nanocomposite fabricated by one-pot hydrothermal method: fluorescence and ultraviolet absorption and visible light transparency. Opt. Mater. 38, 145–153 (2014)

    Article  CAS  Google Scholar 

  23. D. Garg, I. Matai, A. Garg et al., Tragacanth hydrogel integrated CeO2@rGO nanocomposite as reusable photocatalysts for organic dye degradation. ChemSelect 5, 10663–10672 (2020)

    CAS  Google Scholar 

  24. S.W. Ma, S.Y. Chen, H.J. Ge et al., Synergistic effects of the Zr and Sm Co-doped Fe2O3/CeO2 oxygen carrier for chemical looping hydrogen generation. Energy Fuel 34, 10256–10267 (2020)

    Article  CAS  Google Scholar 

  25. Y. Qi, J. Ye, S. Zhang et al., Controllable synthesis of transition metal ion-doped CeO2 micro/nanostructures for improving photocatalytic performance. J. Alloys Compd. 782, 780–788 (2019)

    Article  CAS  Google Scholar 

  26. A. Santiago, N. Neto, E. Longo et al., Fast and continuous obtaining of Eu3+ doped CeO2 microspheres by ultrasonic spray pyrolysis: characterization and photocatalytic activity. J. Mater Sci. 30, 11508–11519 (2019)

    CAS  Google Scholar 

  27. M.K. Kesarla, M.O. Fuentez-Torres, M.A. Alcudia-Ramos et al., Synthesis of g-C3N4/N-doped CeO2 composite for photocatalytic degradation of an herbicide. J. Mater. Res. Technol. 8, 1628–1635 (2019)

    Article  CAS  Google Scholar 

  28. D. Channei, K. Chansaenpak, P. Jannoey et al., The staggered heterojunction of CeO2/CdS nanocomposite for enhanced photocatalytic activity. Solid State Sci. 96, 105951 (2019)

    Article  CAS  Google Scholar 

  29. G. Liu, H. Wang, D. Chen et al., Photodegradation performances and transformation mechanism of sulfamethoxazole with CeO2/CN heterojunction as photocatalyst. Sep. Purif. Technol. 237, 116239 (2020)

    Article  Google Scholar 

  30. X. Yang, Y. Zhang, Y. Wang et al., Hollow beta-Bi2O3@CeO2 heterostructure microsphere with controllable crystal phase for efficient photocatalysis. Chem. Eng. J. 387, 124100 (2020)

    Article  CAS  Google Scholar 

  31. N. Wang, Y. Pan, T. Lv et al., A new ribbon-ignition method for fabricating p-CuO/n-CeO2 heterojunction with enhanced photocatalytic activity. Appl. Surf. Sci. 403, 699–706 (2017)

    Article  CAS  Google Scholar 

  32. K. Wangkawong, S. Phanichphant, D. Tantraviwat et al., Photocatalytic efficiency improvement of Z-scheme CeO2/BiOI heterostructure for RHB degradation and benzylamine oxidation under visible light irradiation. J. Taiwan Inst. Chem. E. 108, 55–63 (2020)

    Article  CAS  Google Scholar 

  33. X. Cui, Z. Liu, G. Li et al., Self-generating CeVO4 as conductive channel within CeO2/CeVO4/V2O5 to induce Z-scheme-charge-transfer driven photocatalytic degradation coupled with hydrogen production. Int. J. Hydrogen Energy 44, 23921–23935 (2019)

    Article  CAS  Google Scholar 

  34. M.Y. Mao, H.Q. Ly, Y.Z. Li et al., Metal support interaction in Pt nanoparticles partially confined in the mesopores of microsized mesoporous CeO2 for highly efficient purification of volatile organic compounds. ACS Catal. 6, 418–427 (2016)

    Article  CAS  Google Scholar 

  35. N. Keshvadi, A. Haghighatzadeh, B. Mazinani, Improvement in visible-light-induced photocatalytic activity of Ag-CeO2 Schottky-type contact heterostructures. Appl. Phys. A 126, 1–4 (2020)

    Article  CAS  Google Scholar 

  36. S. Kouroush, Self-assembled bio-inspired Au/CeO2 nano-composites for visible white LED light irradiated photocatalysis. Colloid Surf. A 599, 124908 (2020)

    Article  CAS  Google Scholar 

  37. S.M. Chaudhari, S. Olviya et al., Enhanced photocatalytic degradation of Diclofenac with Agl/CeO2: a comparison with Mn, Cu and Ag-doped CeO2. Mater. Res. Bull. 143, 111463 (2021)

    Article  CAS  Google Scholar 

  38. J. Zhang, L.S. Wang, X.Y. Hu et al., Balancing surface acidity, oxygen vacancies and Cu+ of CuOx/CeO2 catalysts by Nb doping for enhancing CO oxidation and moisture resistance and lowering byproducts in plasma catalysis. J. Clean. Prod. 318, 128564 (2021)

    Article  CAS  Google Scholar 

  39. G. Li, J. Liu, J. Lan et al., 3D hierarchical anatase TiO2 surperstructures constructed by “nanobricks” built nanosheets with exposed 001 facets: facile synthesis, formation mechanism and superior photocatalytic activity. CrystEngCommun 16, 10547–10552 (2014)

    Article  CAS  Google Scholar 

  40. F.P. Pan, X.M. Xiang, Z.C. Du et al., Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating. Appl. Catal. B 260, 118189 (2020)

    Article  CAS  Google Scholar 

  41. I. Rabani, K. Karuppasamy, D. Vikraman et al., Hierarchical structured nano-polyhedrons of CeO2@ZIF-8 composite for high performance supercapacitor applications. J. Alloys Compd. 875, 160074 (2021)

    Article  CAS  Google Scholar 

  42. W.Q. Li, L. Jin, F. Gao, Advantageous roles of phosphate decorated octahedral CeO2 {111}/g-C3N4 in boosting photocatalytic CO2 reduction: charge transfer bridge and Lewis basic site. Appl. Catal. B 294, 120257 (2021)

    Article  CAS  Google Scholar 

  43. J. Wang, S.W. Lin, Z.Y. Han et al., Glutamine-assisted synthesis of Cu-doped CeO2 nanowires with an improved low-temperature CO oxidation activity. RSC Adv. 5, 28619–28623 (2015)

    Article  CAS  Google Scholar 

  44. Z.S. Lu, Z.Z. Yang, B.L. He et al., Cu-doped ceria: oxygen vacancy formation made easy. Chem. Phys. Lett. 510, 60–66 (2011)

    Article  CAS  Google Scholar 

  45. Y.M. Wang, X.X. Liu, L. Guo, Metal organic framework-derived C-doped ZnO/TiO2 nanocomposite catalysts for enhanced photodegradation of Rhodamine B. J. Colloid Interface Sci. 599, 566–576 (2021)

    Article  CAS  Google Scholar 

  46. Y.H. Shang, T. Wang, Y. Xiao et al., Constructing BiOBr/CoOx/g-C3N4 Z-scheme photocatalyst with CoOx as both redox mediator and cocatalyst for phenol degradation. J. Alloys Compd. 875, 159998 (2021)

    Article  CAS  Google Scholar 

  47. M. Alomar, Y.L. Liu, W. Chen et al., Controlling the growth of ultrathin MoS2 nanosheets/CdS nanoparticles by two-step solvothermal synthesis for enhancing photocatalytic activities under visible light. Appl. Surf. Sci. 480, 1078–1088 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Anhui Provincial Natural Science Foundation of China (1508085SME219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanming Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, M., Liu, X., Wu, H. et al. Construction of Cu2+-doped CeO2 nanocrystals hierarchical hollow structure and its enhanced photocatalytic performance. J Mater Sci: Mater Electron 32, 27576–27586 (2021). https://doi.org/10.1007/s10854-021-07132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07132-6

Navigation