Skip to main content

Advertisement

Log in

Robust PU foam skeleton coated with hydroxylated BN as PVA thermal conductivity filler via microwave-assisted curing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To achieve adaptation to the heat dissipation effect of electronic devices in the 5G era and improvement of the anisotropic thermal conductivity of the insulating polymer, three-dimensional (3D) PU@BNNS-OH network structure was constructed via layer-by-layer assembly with polyurethane (PU) foam as the robust skeleton of three-dimensional structure, and hydroxylated boron nitride nanosheet (BNNS-OH) as thermal conductive filler. Then PU@BNNS-OH was composited with polyvinyl alcohol (PVA) via microwave-assisted curing method to get the final thermal conductivity composites (PVA/PU@BNNS-OH). The result showed that the interconnected thermal conductivity network was significantly effective in improving the anisotropic thermal conductivity of the composite with high-temperature endurance and moderate mechanical property. When the BNNS-OH coating is 10 wt%, the optimal thermal conductivity of the composite is 4.68 W·\({\mathrm{m}}^{-1}\)·\({\mathrm{K}}^{-1}\) and the thermal conductivity enhancement efficiency is 45.50, which is significantly higher than others reported in the literature. Both the finite element analysis and thermal infrared analysis indicated that the thermal conductivity of the composites was significantly improved and paved the way for its potential application. The present microwave-assisted synthesis strategy is fast and energy-saving and can be widely used for synthesizing different insulated polymer-based thermal interface materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Jiang, N. Song, R. Ouyang, P. Ding, Wall density-controlled thermal conductive and mechanical properties of three-dimensional vertically aligned boron nitride network-based polymeric composites. ACS Appl. Mater. Inter. 13, 7556–7566 (2021)

    Article  CAS  Google Scholar 

  2. F. Jiang, S. Zhou, T. Xu, N. Song, P. Ding, Enhanced thermal conductive and mechanical properties of thermoresponsive polymeric composites: Influence of 3D interconnected boron nitride network supported by polyurethane@polydopamine skeleton. Compos. Sci. Technol. 208, 10877 (2021)

    Article  CAS  Google Scholar 

  3. X. Bai, C. Zhang, X. Zeng, L. Ren, R. Sun, J. Xu, Recent progress in thermally conductive polymer/boron nitride composites by constructing three-dimensional networks. Compos. Commun 24, 100650 (2021)

    Article  Google Scholar 

  4. Y. Zhang, Y. Liu, Y. Cao, L. Cao, X. Zheng, J. Wang, Y. Pan, N. Wang, Effect of well-designed graphene heat conductive channel on the thermal conductivity of C/SiC composites. Ceram. Int. 47, 19115–19122 (2021)

    Article  CAS  Google Scholar 

  5. Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv, J. Ying, X. Lu, J. Lu, Y. Yao, Q. Wei, R. Sun, J. Yu, N. Jiang, D. Chen, C.P. Wong, R. Xiang, S. Maruyama, C.T. Lin, Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15, 6489–6498 (2021)

    Article  CAS  Google Scholar 

  6. C. Chen, Y. Xue, Z. Li, Y.F. Wen, X.W. Li, F. Wu, X.J. Li, D. Shi, Z.G. Xue, X.L. Xie, Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles. Chem. Eng. J. 369, 1150–1160 (2019)

    Article  CAS  Google Scholar 

  7. D. Bao, Y. Cui, F. Xu, M. Li, K. Li, X. Zhang, Z. Liu, Y. Zhu, H. Wang, High thermal conductivity of epoxy composites via micro-zone enhanced 3D interconnected nickel skeleton. Ceram. Int. 46, 27531–27538 (2020)

    Article  CAS  Google Scholar 

  8. L. Chen, C. Xiao, Y. Tang, X. Zhang, K. Zheng, X. Tian, Preparation and properties of boron nitride nanosheets/cellulose nanofiber shear-oriented films with high thermal conductivity. Ceram. Int. 45, 12965–12974 (2019)

    Article  CAS  Google Scholar 

  9. A. Kaźmierczak-Bałata, L. Grządziel, M. Guziewicz, V. Venkatachalapathy, A. Kuznetsov, M. Krzywiecki, Correlations of thermal properties with grain structure, morphology, and defect balance in nanoscale polycrystalline ZnO films. Appl. Surf. Sci. 546, 149095 (2021)

    Article  CAS  Google Scholar 

  10. D. Pan, Q. Li, W. Zhang, J. Dong, F. Su, V. Murugadoss, Y. Liu, C. Liu, N. Naik, Z. Guo, Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method. Compos. Part B 209, 108609 (2021)

    Article  CAS  Google Scholar 

  11. R. Yamamoto, D. Kowalski, R. Zhu, K. Wada, Y. Sato, S. Kitano, C. Zhu, Y. Aoki, H. Habazaki, Fabrication of superhydrophobic copper metal nanowire surfaces with high thermal conductivity. Appl. Surf. Sci. 537, 147854 (2021)

    Article  CAS  Google Scholar 

  12. P. Zhang, Q. Li, Y. Xuan, Thermal contact resistance of epoxy composites incorporated with nano-copper particles and the multi-walled carbon nanotubes. Compos. Part A 57, 1–7 (2014)

    Article  CAS  Google Scholar 

  13. Y. Hu, G. Du, N. Chen, A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity. Compos. Sci. Technol. 124, 36–43 (2016)

    Article  CAS  Google Scholar 

  14. J. Gu, Z. Lv, Y. Wu, R. Zhao, L. Tian, Q. Zhang, Enhanced thermal conductivity of SiCp/PS composites by electrospinning–hot press technique. Compos. Part A 79, 8–13 (2015)

    Article  CAS  Google Scholar 

  15. B. Nan, K. Wu, W. Chen, Y. Liu, Q. Zhang, M. Lu, A combination of nanodiamond and boron nitride for the preparation of polyvinyl alcohol composite film with high thermal conductivity. Appl. Surf. Sci. 508, 144797 (2020)

    Article  CAS  Google Scholar 

  16. L. Li, Y. Qin, H. Wang, M. Li, G. Song, Y. Wu, X. Wei, Z. Ali, J. Yi, S. Song, C. Lin, N. Jiang, J. Yu, Improving thermal conductivity of poly(vinyl alcohol) composites by using functionalized nanodiamond. Compos. Commun. 23, 100596 (2021)

    Article  Google Scholar 

  17. Y. Liu, K. Wua, F. Luo, M. Lu, F. Xiao, X. Du, S. Zhang, L. Liang, M. Lu, Signifificantly enhanced thermal conductivity in polyvinyl alcohol composites enabled by dopamine modifified graphene nanoplatelets. Compos. Part A 117, 134–143 (2019)

    Article  CAS  Google Scholar 

  18. T. Ha, D. Kim, J. Ka, Y. Kim, W. Koh, H. Lim, Y. Yoo, Simultaneous effects of silver-decorated graphite nanoplatelets and anisotropic alignments on improving thermal conductivity of stretchable poly(vinyl alcohol) composite films. Compos. Part A 138, 106045 (2020)

    Article  CAS  Google Scholar 

  19. G.M. Aparicioa, R.A. Vargasb, P.R. Buenoc, Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes. J. Non-Cryst. Solids 522, 119520 (2019)

    Article  CAS  Google Scholar 

  20. D. Fan, X. Lv, J. Feng, S. Zhang, J. Xie, J. Liu, Integrating CoNi nanoparticles encapsulated by few-layer h -BN with excellent thermal conductivity and thermal stability. J. Alloy. Comp. 704, 701–706 (2017)

    Article  CAS  Google Scholar 

  21. H. Cheng, K. Zhao, Y. Gong, X. Wang, R. Wang, F. Wang, R. Hu, F. Wang, X. Zhang, J. He, X. Tian, Covalent coupling regulated thermal conductivity of poly(vinyl alcohol)/ boron nitride composite fifilm based on silane molecular structure. Compos. Part A 137, 106026 (2020)

    Article  CAS  Google Scholar 

  22. S.K. Biswas, H. Sano, M.I. Shams, H. Yano, Three-dimensional-moldable nanofiber-reinforced transparent composites with a hierarchically self-assembled “Reverse” nacre like architecture. ACS Appl. Mater. Inter. 9, 30177–30184 (2017)

    Article  CAS  Google Scholar 

  23. G. Pan, Y. Yao, X. Zeng, J. Sun, J. Hu, R. Sun, J.B. Xu, C.P. Wong, Learning from natural nacre: constructing layered polymer composites with high thermal conductivity. ACS Appl. Mater. Inter. 9, 33001–33010 (2017)

    Article  CAS  Google Scholar 

  24. J. Chen, X.Y. Huang, B. Sun, Y.X. Wang, Y.K. Zhu, P.K. Jiang, Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl. Mater. Inter. 9, 30909–30917 (2017)

    Article  CAS  Google Scholar 

  25. J.W. Gu, Z.Y. Lv, Y.L. Wu, Y.Q. Guo, L.D. Tian, H. Qiu, W.Z. Li, Q.Y. Zhang, Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method. Compos. Part A-Appl. S. 94, 209–216 (2017)

    Article  CAS  Google Scholar 

  26. Y. Zhan, Z. Long, X. Wan, C. Zhan, J. Zhang, Y. He, Enhanced dielectric permittivity and thermal conductivity of hexagonal boron nitride/poly(arylene ether nitrile) composites through magnetic alignment and mussel inspired co-modification. Ceram. Int. 43, 12109–12119 (2017)

    Article  CAS  Google Scholar 

  27. K. Kim, H. Ju, J. Kim, Filler orientation of boron nitride composite via external electric field for thermal conductivity enhancement. Ceram. Int. 42, 8657–8663 (2016)

    Article  CAS  Google Scholar 

  28. J. Zhang, X. Wang, C. Yu, Q. Li, Z. Li, C. Li, H. Lu, Q. Zhang, J. Zhao, M. Hu, Y. Yao, A facile method to prepare flexible boron nitride/poly(vinyl alcohol) composites with enhanced thermal conductivity. Compos. Sci. Technol. 149, 41–47 (2017)

    Article  CAS  Google Scholar 

  29. Z. Gao, Q. Zhao, C. Li, S. Wang, L. Dong, G.H. Hu, Q. Yang, C. Xiong, A novel fluid-filler/polymer composite as high-temperature thermally conductive and electrically insulating material. Compos. Sci. Technol. 150, 128–134 (2017)

    Article  CAS  Google Scholar 

  30. G. Lian, C.C. Tuan, L. Li, S. Jiao, Q. Wang, K.S. Moon, D. Cui, C.P. Wong, Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mater. 28, 6096–6104 (2016)

    Article  CAS  Google Scholar 

  31. J. Hu, Y. Huang, Y. Yao, G. Pan, J. Sun, X. Zeng, R. Sun, J.B. Xu, B. Song, C.P. Wong, Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Inter. 9, 13544–13553 (2017)

    Article  CAS  Google Scholar 

  32. E.K. Sam, J. Liu, X.M. Lv, Surface Engineering Materials of Superhydrophobic Sponges for Oil/Water Separation: A Review. Ind. Eng. Chem. Res. 60, 2353–2364 (2021)

    Article  CAS  Google Scholar 

  33. L. Li, K. Wang, Z. Huang, C. Zhang, T. Liu, Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode. Nano Res. 9, 2938–2949 (2016)

    Article  CAS  Google Scholar 

  34. X. Wang, P. Wu, Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading. Chem. Eng. J. 348, 723–731 (2018)

    Article  CAS  Google Scholar 

  35. N. Wang, G. Yang, H. Wang, C. Yan, R. Sun, C.P. Wong, A universal method for large-yield and high-concentration exfoliation of two-dimensional hexagonal boron nitride nanosheets. Mater. Today 27, 33–42 (2019)

    Article  CAS  Google Scholar 

  36. D. Fan, Q. Zhou, X. Lv, J. Jing, Z. Ye, S. Shao, J. Xie, Synthesis, thermal conductivity and anti-oxidation properties of copper nanoparticles encapsulated within few-layer h-BN. Ceram. Int. 44, 1205–1208 (2018)

    Article  CAS  Google Scholar 

  37. W. Choi, K. Choi, C. Yu, Ultrafast nanoscale polymer coating on porous 3D structures using microwave irradiation. Adv. Funct. Mater. 28, 1704877 (2018)

    Article  CAS  Google Scholar 

  38. H. Fang, X. Zhang, Y. Zhao, S.L. Bai, Dense graphene foam and hexagonal boron nitride filled PDMS composites with high thermal conductivity and breakdown strength. Compos. Sci. Technol. 152, 243–253 (2017)

    Article  CAS  Google Scholar 

  39. X. Wang, Q. Weng, X. Wang, X. Li, J. Zhang, F. Liu, X. Jiang, H. Guo, N. Xu, D. Golberg, Y. Bando, Biomass-sirected synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites. ACS Nano 8, 9081–9088 (2014)

    Article  CAS  Google Scholar 

  40. O.H. Kwon, T. Ha, D.G. Kim, B.G. Kim, Y.S. Kim, T.J. Shin, W.G. Koh, H.S. Lim, Y. Yoo, Anisotropy-driven high thermal conductivity in stretchable poly(vinyl alcohol)/hexagonal boron nitride nanohybrid films. ACS Appl. Mater. Inter. 10, 34625–34633 (2018)

    Article  CAS  Google Scholar 

  41. X. Zeng, Y. Yao, Z. Gong, F. Wang, R. Sun, J. Xu, C.P. Wong, Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 11, 6205–6213 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial supports of National Natural Science Foundation of China (21607063).

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomeng Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liu, B. & Lv, X. Robust PU foam skeleton coated with hydroxylated BN as PVA thermal conductivity filler via microwave-assisted curing. J Mater Sci: Mater Electron 32, 27524–27533 (2021). https://doi.org/10.1007/s10854-021-07127-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07127-3

Navigation