Skip to main content

Advertisement

Log in

Enhanced magnetoelectric coupling in environmental friendly lead-free Ni0.8Zn0.2Fe2O4–Ba0.85Ca0.15Zr0.1Ti0.9O3 laminate composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free piezomagnetic–piezoelectric, Ni0.8Zn0.2Fe2O4(NZFO)–Ba0.85Ca0.15Zr0.1Ti0.9O3(BCZT) laminate composites featuring improved magnetoelectric (ME) properties are reported. The solid-state method has been used for the synthesis of NZFO and BCZT. Sintered layers were laminated using silver epoxy with a 2–2 connectivity scheme. The refined profiles of X-ray diffraction patterns support the coexistence of tetragonal and rhombohedral phases in BCZT and spinel cubic phase in NZFO. Scanning electron microscopy with elemental mapping revealed prepared sample's surface morphology and chemical composition. BCZT exhibited a high value of dielectric constant at TC (ɛ ~ 11,200 at 100 Hz), the significant value of electromechanical coupling factor (KP ~ 51.2%), and well-saturated polarization (P) vs applied electric field (E) loops. Ferri-magnetic NZFO also exhibits a large value of saturation magnetization (MS ~ 62.10 emu/g), and plot between the derivative of the square of magnetization (dM2/dH) vs applied magnetic field (H) follows the same trend as that of observed field-dependent ME coupling coefficient for layered composites. The layered composites demonstrated low leakage current and high dielectric constant, which further favours stronger ME coupling. At lower magnetic fields, tri-layer (NZFO/BCZT/NZFO) and bi-layer (BCZT/NZFO) laminate composites respond with ME coupling coefficients αME ~ 600 mV/cm-Oe and 128 mV/cm-Oe, respectively, making them excellent lead-free material for future multifunctional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Ma, J. Hu, Z. Li, C. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. J. Adv. Mater. 23, 1062–1087 (2011)

    CAS  Google Scholar 

  2. D.I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006)

    CAS  Google Scholar 

  3. R. Goel, R. Syal, N. Sharma, S. Dhiman, A.K. Singh, A. Garg, S. Kumar, Enhanced room-temperature multiferroic behaviour of Ni-doped Na0.5Bi0.5TiO3 ceramics. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-05681-4

    Article  Google Scholar 

  4. C.W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B. 50, 6082–6088 (1994)

    CAS  Google Scholar 

  5. L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, Multiferroics and magnetoelectrics: Thin films and nanostructures. J. Phys. Condens. Matter. 20, 434220 (2008)

    Google Scholar 

  6. S. Srikari, Composites and Applications, Graphene Sci. Handb. (2016) 505–506.

  7. N.A. Spaldin, S. Cheong, R. Ramesh, Multiferroics: past, present, and future additional resources for physics today. Cit. Phys. Today. 63, 38 (2010)

    Google Scholar 

  8. A.S. Kumar, C.S.C. Lekha, S. Vivek, V. Saravanan, K. Nandakumar, S.S. Nair, Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti09O3–CoFe2O4 core-shell nanocomposite. J. Magn. Mater. 418, 294–299 (2016)

    CAS  Google Scholar 

  9. R. Ade, T. Karthik, J. Kolte, V. Sambasiva, A.R. Kulkarni, N. Venkataramani, Room temperature magnetoelectric and magnetodielectric properties of 2–2 bilayer 0.50Pb(Ni1/3Nb2/3)O3–0.35PbTiO3–0.15PbZrO3/CoFe2O4 thin film. Scripta Mater. 150, 125–129 (2018)

    CAS  Google Scholar 

  10. S. Dash, R.N.P. Choudhary, M.N. Goswami, Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0–3 connectivity. J. Alloys Compd. 715, 29–36 (2017)

    CAS  Google Scholar 

  11. V.M. Petrov, G. Srinivasan, Enhancement of magnetoelectric coupling in functionally graded ferroelectric and ferromagnetic bilayers. Phys. Rev. B. 78, 1–8 (2008)

    Google Scholar 

  12. N.S. Sowmya, A. Srinivas, P. Saravanan, K.V.G. Reddy, S.V. Kamat, J.P. Praveen, D. Das, G. Murugesan, S.D. Kumar, V. Subramanian, Studies on magnetoelectric coupling in lead-free [(0.5) BCT-(0.5) BZT]-NiFe2O4 laminated composites at low and EMR frequencies. J. Alloys Compd. 743, 240–248 (2017)

    Google Scholar 

  13. N.S. Sowmya, A. Srinivas, K.V.G. Reddy, J.P. Praveen, D. Das, S.D. Kumar, V. Subramanian, S.V. Kamat, Magnetoelectric coupling studies on (x) (0.5BZT-0.5BCT)–(100–x)NiFe2O4 [x=90−70wt%] particulate composite. Ceram. Int. 43, 2523–2528 (2017)

    Google Scholar 

  14. P. Bansal, M. Kumar, R. Syal et al., Magnetoelectric coupling enhancement in lead-free BCTZ–xNZFO composites. J Mater Sci Mater Electron 32, 17512–17523 (2021)

    CAS  Google Scholar 

  15. R.A. Islam, S. Priya, Progress in dual (piezoelectric-magnetostrictive) phase magnetoelectric sintered composites. Adv. Cond. Matter Phys. 2012, 320612 (2012)

    Google Scholar 

  16. J.P. Praveen, V.R. Monaji, S.D. Kumar, V. Subramanian, D. Das, Enhanced magnetoelectric response from lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3–CoFe2O4 laminate and particulate composites. Ceram. Int. 44, 4298–4306 (2018)

    Google Scholar 

  17. N.S. Negi, A. Sharma, J. Shah, R.K. Kotnala, Investigation on impedance response, magnetic and ferroelectric properties of 0.20(Co1-xZnxFe2yMnyO4)-0.80(Pb0.70Ca0.30TiO3) magnetoelectric composites. Mater. Chem. Phys. 148, 1221–1229 (2014)

    CAS  Google Scholar 

  18. D.A. Sanchez, N. Ortega, A. Kumar, R. Roque-Malherbe, R. Polanco, J.F. Scott, R.S. Katiyar, Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: lead iron tantalate—lead zirconate titanate (PFT/PZT). AIP Adv. 1, 1–14 (2011)

    CAS  Google Scholar 

  19. R. Gupta, M. Tomar, A. Kumar, V. Gupta, Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application. Smart Mater. Struct. 26, 035002 (2017)

    Google Scholar 

  20. J.P. Praveen, V.R. Monaji, E. Chandrakala, S. Indla, S.D. Kumar, V. Subramanian, D. Das, Enhanced magnetoelectric coupling in Ti and Ce substituted lead-free CFO-BCZT laminate composites. J. Alloys Compd. 750, 392–400 (2018)

    Google Scholar 

  21. J.A. Bartkowska, The magnetoelectric coupling effect in multiferroic composites based on PZT-ferrite. J. Magn. Magn. Mater. 374, 703–706 (2015)

    CAS  Google Scholar 

  22. N. Ortega, A. Kumar, R.S. Katiyar, C. Rinaldi, Dynamic magnetoelectric multiferroics PZT/CFO multilayered nanostructure. J. Mater. Sci. 44, 5127–5142 (2009)

    CAS  Google Scholar 

  23. R.A. Islam, S. Priya, Magnetoelectric properties of the lead–free cofired BaTiO3 – ( Ni0.8 Zn 0.2) Fe2O4 bilayer composite. Appl. Phys. Lett. 89, 152911 (2006)

    Google Scholar 

  24. G. Herrera-Pérez, D. Morales, F. Paraguay-Delgado, R. Borja-Urby, A. Reyes-Rojas, L.E. Fuentes-Cobas, Structural analysis, optical and dielectric function of (Ba0.9Ca0.1)(Ti9Zr0.1)O3 nanocrystals. J. Appl. Phys. 120, 1–7 (2016)

    Google Scholar 

  25. M. Aggarwal, M. Kumar, R. Syal, V.P. Singh, A.K. Singh, S. Dhiman, S. Kumar, Enhanced pyroelectric figure of merits in Sr and Zr co-doped porous BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 31, 2337–2346 (2020)

    CAS  Google Scholar 

  26. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 10, 1–4 (2009)

    Google Scholar 

  27. R. Syal, M. Kumar, A.K. Singh, A. De, O.P. Thakur, S. Kumar, Enhancement in the piezoelectric properties in lead-free BZT-xBCT dense ceramics. J. Mater. Sci. Mater. Electron. 31, 21651–21660 (2020)

    CAS  Google Scholar 

  28. P. Wang, Y. Li, Y. Lu, Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcination and sintering temperature. J. Eur. Ceram. Soc. 31, 2005–2012 (2011)

    CAS  Google Scholar 

  29. J. Rani, V.K. Kushwaha, J. Kolte, C.V. Tomy, Structural, dielectric and magnetoelectric studies of [0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3]-Ni0.8Zn0.2Fe2O4 multiferroic composites. J. Alloys Compd. 696, 266–275 (2017)

    CAS  Google Scholar 

  30. N.N. Jiang, Y. Yang, Y.X. Zhang, J.P. Zhou, P. Liu, C.Y. Deng, Influence of zinc concentration on structure, complex permittivity and permeability of Ni-Zn ferrites at high frequency. J. Magn. Magn. Mater. 401, 370–377 (2016)

    CAS  Google Scholar 

  31. M. Atif, M. Nadeem, R. Grössinger, R.S. Tortelli, Studies on the magnetic, magnetostrictive, and electrical properties of sol-gel synthesized Zn doped nickel ferrite. J. Alloys Compd. 509, 5720–5724 (2011)

    CAS  Google Scholar 

  32. J. Rani, V.K. Kushwaha, P.K. Patel, C.V. Tomy, Room temperature magnetoelectric properties of [Ba(Zr0.2Ti0.8)O30.5(Ba0.7Ca0.3)TiO3]/Ni0.8Zn0.2Fe2O4] bilayer thin films deposited by laser ablation. Mater. Chem. Phys. 256, 123692 (2020)

    CAS  Google Scholar 

  33. Z. Hanani, D. Mezzane, M. Amjoud et al., Structural, dielectric, and ferroelectric properties of lead-free BCZT ceramics elaborated by low-temperature hydrothermal processing. J Mater Sci Mater Electron. 31, 10096–10104 (2020)

    CAS  Google Scholar 

  34. J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, D. Das, Effect of poling process on piezoelectric properties of sol-gel derived BZT-BCT ceramics. J. Eur. Ceram. Soc. 35, 1785–1798 (2014)

    Google Scholar 

  35. J.J. Thomas, A.B. Shinde, P.S.R. Krishna, N. Kalarikkal, Cation distribution and micro-level magnetic alignments in the nanosized nickel-zinc ferrite. J. Alloys Compd. 546, 77–83 (2013)

    CAS  Google Scholar 

  36. Z. Hanani, S. Merselmiz, A. Danine, N. Stein, D. Mezzane, M. Amjad, M. Lahcini, Y. Gagou, M. Spreitzer, D. Vengust, Z. Kutnjak, M. El Marssi, I.A. Luk’yanchuk, M. Gouné, Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. J. Adv. Ceram. 9, 210–219 (2020)

    CAS  Google Scholar 

  37. D.E. Newbury, N.W.M. Ritchie, Elemental mapping of microstructures by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS): extraordinary advances with the silicon drift detector (SDD). J. Anal. At. Spectrom. 28, 973 (2013)

    CAS  Google Scholar 

  38. S.D. Kumar, J. Magesh, V. Subramanian, Temperature-dependent magnetoelectric studies in co-fired bilayer laminate composites. J. Alloys Compd 753, 595–600 (2018)

    Google Scholar 

  39. K. Okazaki, K. Nagata, Effects of grain size and porosity on electrical and optical properties of PLZT ceramics. J. Am. Ceram. Soc. 56, 82–86 (1973)

    CAS  Google Scholar 

  40. D. Damjanovic, A. Biancoli, L. Batooli, A. Vahabzadeh, J. Trodahl, Elastic, dielectric, and piezoelectric anomalies and Raman spectroscopy of 0.5Ba(Ti0.8Zr0.2)O3–0.5(Ba0.7Ca0.3)-TiO3. Appl. Phys. Lett. 100, 192907 (2012)

    Google Scholar 

  41. X. Liu, Z. Chen, B. Fang, J. Ding, X. Zhao, H. Xu, H. Luo, Enhancing piezoelectric properties of BCZT ceramics by Sr and Sn co-doping. J. Alloys Compd. 640, 128–133 (2015)

    CAS  Google Scholar 

  42. D. Bao, Multilayered dielectric/ferroelectric thin films and superlattices. Curr. Opin. Solid State Mater. Sci. 12, 55–61 (2008)

    CAS  Google Scholar 

  43. R. Xu, M. Shen, S. Ge, Z. Gan, W. Cao, Dielectric enhancement of sol-gel derived BaTiO3/SrTiO3 multilayered thin films. Thin Solid Films 406, 113–117 (2002)

    CAS  Google Scholar 

  44. F.C. Sun, M.T. Kesim, Y. Espinal, S.P. Alpay, Are ferroelectric multilayers capacitors in series. J. Mater. Sci. 51, 499–505 (2015)

    Google Scholar 

  45. M. Shen, S. Ge, W. Cao, Dielectric enhancement and Maxwell-Wagner effects in polycrystalline ferroelectric multilayered thin films. J. Phys. D. Appl. Phys. 34, 2935–2938 (2001)

    CAS  Google Scholar 

  46. K. Thakur, S. Kumar, N. Thakur, Investigation of structural, dielectric, and magnetoelectric properties of K0.5Na0.5NbO3–MnFe2O4 lead-free composite system. J. Alloys Compd. 857, 158251 (2021)

    Google Scholar 

  47. J. Rani, V.K. Kushwaha, P.K. Patel, C.V. Tomy, Exploring magnetoelectric coupling in trilayer [Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3]/CoFe2O4/[Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3] thin film. J. Alloys Compd. 863, 157702 (2021)

    CAS  Google Scholar 

  48. H. Yang, J. Zhang, Y. Lin et al., High Curie temperature and enhanced magnetoelectric properties of the laminated Li0.058(Na0.535K0.48)0.942NbO3/Co0.6 Zn0.4Fe1.7Mn0.3O4 composites. Sci Rep. 7, 44855 (2017)

    CAS  Google Scholar 

  49. C. Wang, M. Takahashi, H. Fujino, X. Zhao, E. Kume et al., Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect. J. Appl. Phys. 99, 054104 (2006)

    Google Scholar 

  50. J. Hao, W. Bai, W. Li, J. Zhai, Correlation between the microstructure and electrical properties in high-performance (Ba0.85 Ca0.15)(Zr0.1 Ti0.9) O3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 95, 1998–2006 (2012)

    CAS  Google Scholar 

  51. S. Lu, Z. Xu, S. Su, R. Zuo, Temperature driven nano-domain evolution in lead-free Ba(Zr0.2Ti0.8)O3–50(Ba0.7Ca0.3)TiO3 piezoceramics. Appl. Phys. Lett. 105, 1–4 (2014)

    Google Scholar 

  52. J. Gao, D. Xue, Y. Wang, D. Wang, L. Zhang, H. Wu, S. Guo, H. Bao, C. Zhou, W. Liu, S. Hou, G. Xiao, X. Ren, Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. Appl. Phys. Lett. 99, 2012–2015 (2011)

    Google Scholar 

  53. P. Bharathi, K.B.R. Varma, Grain and the concomitant ferroelectric domain size-dependent physical properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics fabricated using powders derived from oxalate precursor route. J. Appl. Phys. 116, 1–10 (2014)

    Google Scholar 

  54. G. Viola, K. Boon Chong, M. Eriksson, Effect of grain size on domain structures, dielectric and thermal deploying of Nd-substituted bismuth titanate ceramics. Appl. Phys. Lett. 103, 1–4 (2013)

    Google Scholar 

  55. T.T. Le, Z. Valdez-Nava, T. Lebey, F. Mazaleyrat, Influence of cold isostatic pressing on the magnetic properties of Ni-Zn-Cu ferrite. AIP Adv. 8, 047806 (2018)

    Google Scholar 

  56. S. Premkumar, S.A. Raut, D. Ghone, V.L. Mathe, Magnetic and magnetostrictive properties of tape casted free-standing NZFO thick films and its composite with piezoelectric phase. J. Magn. Magn. Mater. 490, 2–8 (2019)

    Google Scholar 

  57. A. Jain, Y.G. Wang, N. Wang, Y. Li, F.L. Wang, Influence of individual phases on the magnetoelectric coupling and electromechanical response in (1–x)Ba0.83Ca0.10Sr0.07TiO3-xBiFeO3 (x = 0–0.30) multiferroic composites. J. Magn. Magn. Mater. 495, 165905 (2020)

    CAS  Google Scholar 

  58. C.S. Park, A. Khachaturyan, S. Priya, Giant magnetoelectric coupling in laminate thin-film structure grown on magnetostrictive substrate. Appl. Phys. Lett. 100, 1–5 (2012)

    Google Scholar 

  59. A.B. Swain, S. Dinesh Kumar, V. Subramanian, P. Murugavel, Engineering resonance modes for enhanced magnetoelectric coupling in bilayer laminate composites for energy harvesting applications. Phys. Rev. Appl. 13, 024026 (2020)

    CAS  Google Scholar 

  60. G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B. 64, 029902 (2002)

    Google Scholar 

  61. Y. Wang, Y. Pu, Y. Tian, X. Li, Z. Wang, Y. Shi, J. Zhang, G. Zhang, Enhanced magnetoelectric properties of the laminated Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4 composites. J. Alloys Compd. 696, 1307–1313 (2017)

    CAS  Google Scholar 

  62. J. Rani, V.K. Kushwaha, J. Kolte, C.V. Tomy, Strong magnetoelectric effect in pulsed laser deposited [Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3]/CoFe2O4 bilayer thin film. J. Am. Ceram. Soc. 101, 5651–5658 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

Sanjeev Kumar is grateful to the Department of Science & Technology (DST), Government of India, for generous funding through Grant CRG/2018/001426. P. Bansal is thankful to DST for providing fellowship in the form of Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, P., Syal, R., Singh, A.K. et al. Enhanced magnetoelectric coupling in environmental friendly lead-free Ni0.8Zn0.2Fe2O4–Ba0.85Ca0.15Zr0.1Ti0.9O3 laminate composites. J Mater Sci: Mater Electron 32, 25481–25492 (2021). https://doi.org/10.1007/s10854-021-07012-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07012-z

Navigation