Skip to main content
Log in

Tunable Magnetoelectric Response in Cofired (Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3)/CoFe2O4 Laminated Composite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Magnetoelectric (ME) composites exhibiting strain-mediated coupling are gaining increasing interest for applications. In this paper, an enhancement of ME response on simple lead-free laminated composites (80Bi0.5Na0.5TiO3-20Bi0.5K0.5TiO3)/CoFe2O4 (BNKT/CFO) prepared by a modified cofiring processing were demonstrated, by analyzing the effect of thickness variation on ME properties. The coexistence of independent BNKT and CFO phase and the presence of a clear and well-bonded interface were confirmed. Specifically, the maximum ME voltage coefficient of laminated composite reached up to 74.59 mV/(cm·Oe) with an optimized BNKT/CFO layer thickness ratio of 1:2. The static elastic model and the equivalent circuit model were used to determine the interface coupling. Also, there is a large magnetodielectric (MD) response up to 5.1% in a magnetic field of 8 kOe. Tuning the layer thickness, the ME response of laminated composite is further optimized, which is of significance in development of magnetic-field-tuned electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).

    Article  CAS  Google Scholar 

  2. M. Fiebig, J. Phys. D Appl. Phys. 38, R123 (2005).

    Article  CAS  Google Scholar 

  3. H. Palneedi, V. Annapureddy, S. Priya, and J. Ryu, Actuators 5, 9 (2016).

    Article  Google Scholar 

  4. D. Nanda, P. Kumar, B. Samanta, R. Sahu, and A. Singh, J. Electron. Mater. 48, 5039 (2019).

    Article  CAS  Google Scholar 

  5. S. Dong, J.M. Liu, S.W. Cheong, and Z.F. Ren, Adv. Phys. 64, 519 (2015).

    Article  CAS  Google Scholar 

  6. C.W. Nan, M.I. Bichurin, S.X. Dong, and D. Viehland, J. Appl. Phys. 103, 031101 (2008).

    Article  Google Scholar 

  7. Y. Xue, R. Xu, Z. Wang, R. Gao, C. Li, G. Chen, X. Deng, W. Cai, and C. Fu, J. Electron. Mater. 48, 4806 (2019).

    Article  CAS  Google Scholar 

  8. H.B. Yang, J.T. Zhang, Y. Lin, and T. Wang, Sci. Rep. 7, 44855 (2017).

    Article  CAS  Google Scholar 

  9. S. Liu, L.W. Deng, S.Q. Yan, H. Luo, L.L. Yao, L.H. He, Y.H. Li, M.Z. Wu, and S.X. Huang, J. Appl. Phys. 122, 034103 (2017).

    Article  Google Scholar 

  10. H. Palneedi, D. Maurya, G.Y. Kim, S. Priya, S.L. Kang, K.H. Kim, S.Y. Choi, and J. Ryu, Appl. Phys. Lett. 107, 012904 (2015).

    Article  Google Scholar 

  11. Y. Yan, Y. Zhou, and S. Priya, Appl. Phys. Lett. 102, 052907 (2013).

    Article  Google Scholar 

  12. C.M. Leung, X. Zhuang, J. Xu, J. Li, G. Srinivasan, and D. Viehland, Appl. Phys. Lett. 110, 112904 (2017).

    Article  Google Scholar 

  13. Z.Q. Chu, H.D. Shi, W.L. Shi, G.X. Liu, J. Wu, J.K. Yang, and S.X. Dong, Adv. Mater. 29, 1606022 (2017).

    Article  Google Scholar 

  14. M. Otonicar, S.D. Skapin, M. Spreitzer, and D. Suvorov, J. Eur. Ceram. Soc. 30, 971 (2010).

    Article  CAS  Google Scholar 

  15. A. Moosavi, M.A. Bahrevar, A.R. Aghaei, P. Ramos, M. Alguero, and H. Amorin, J. Phys. D Appl. Phys. 47, 055304 (2014).

    Article  Google Scholar 

  16. J.P. Praveen, V.R. Monaji, S.D. Kumar, V. Subramanian, and D. Das, Ceram. Int. 44, 4298 (2018).

  17. H.B. Yang, G. Zhang, and Y. Lin, Mater. Lett. 164, 388 (2016).

    Article  CAS  Google Scholar 

  18. H. Amorín, M. Algueró, R.D. Campo, E. Vila, P. Ramos, M. Dollé, Y. Romaguera-Barcelay, J.P. Cruz, and A. Castro, Sci. Technol. Adv. Mater. 16, 016001 (2015).

    Article  Google Scholar 

  19. J. Zhai, Z. Xing, S. Dong, J. Li, and D. Viehland, J. Am. Ceram. Soc. 91, 351–358 (2008).

    Article  CAS  Google Scholar 

  20. M. Kumari, A. Singh, A. Gupta, C. Prakash, and R. Chatterjee, J. Appl. Phys. 116, 244101 (2014).

    Article  Google Scholar 

  21. Y. Lin, J. Zhang, H. Yang, and T. Wang, J. Alloys Compd. 692, 86 (2016).

    Article  Google Scholar 

  22. R.A. Islam, C.B. Rong, J.P. Liu, and S. Priya, J. Mater. Sci. 43, 6337 (2008).

    Article  CAS  Google Scholar 

  23. H. Yang, G. Zhang, and Y. Lin, J. Alloys Compd. 644, 390 (2015).

    Article  CAS  Google Scholar 

  24. S. Liu, S.Q. Yan, L.L. Yao, J. He, L.H. He, Z.W. Hu, S.X. Huang, and L.W. Deng, J. Magn. Magn. Mater. 444, 284 (2017).

    Article  CAS  Google Scholar 

  25. S.D. Bhame and P.A. Joy, Sens. Actuators A 137, 256 (2007).

    Article  CAS  Google Scholar 

  26. K.K. Mohaideen and P.A. Joy, Appl. Phys. Lett. 101, 072405 (2012).

    Article  Google Scholar 

  27. D. Rout, K.S. Moon, V.S. Rao, and S. Kang, J. Ceram. Soc. Jpn. 117, 797 (2009).

    Article  CAS  Google Scholar 

  28. H. Lidjici, B. Lagoun, M. Berrahal, M. Rguitti, M.A. Hentatti, and H. Khemakhem, J. Alloys Compd. 618, 643 (2015).

    Article  CAS  Google Scholar 

  29. R. Sharma and R.P. Tandon, J. Mater. Sci.: Mater. Electron. 26, 5287 (2015).

    CAS  Google Scholar 

  30. D.C. Sinclair, T.B. Adams, F.D. Morrison, and A.R. West, Appl. Phys. Lett. 80, 2153 (2002).

    Article  CAS  Google Scholar 

  31. J.F. Scott, J. Phys.: Condens. Matter 20, 021001 (2008).

    Google Scholar 

  32. H. Yang, G. Zhang, Y. Lin, and F. Wang, J. Mater. Sci.: Mater. Electron. 27, 6586 (2016).

    CAS  Google Scholar 

  33. M.I. Bichurin, V.M. Petrov, and G. Srinivasan, Phys. Rev. B. 68, 054402 (2003).

    Article  Google Scholar 

  34. M.I. Bichurin, V.M. Petrov, and G. Srinivasan, J. Appl. Phys. 92, 7681 (2002).

    Article  CAS  Google Scholar 

  35. G. Lou, X. Yu, and S. Lu, Sensors 17, 1399 (2017).

    Google Scholar 

  36. T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991).

    Article  CAS  Google Scholar 

  37. G. Catalan, Appl. Phys. Lett. 88, 102902 (2006).

    Article  Google Scholar 

  38. S.A. Gridnev, A.V. Kalgin, and V.A. Chernykh, Integr. Ferroelectr. 109, 70 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (grant no. 2017YFA0204600) and the National Natural Science Foundation of China (grant no. 51902104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Liu, S., Wei, K. et al. Tunable Magnetoelectric Response in Cofired (Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3)/CoFe2O4 Laminated Composite. J. Electron. Mater. 49, 650–658 (2020). https://doi.org/10.1007/s11664-019-07773-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07773-8

Keywords

Navigation