Skip to main content
Log in

Preparation and excellent dielectric properties of flexible Ba0.7Sr0.29La0.01TiO3 composite fiber ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ba0.7Sr0.29La0.01TiO3 (BSLT) fibers with good crystallinity were prepared by the electrospinning method, and the flexible BSLT/PVDF composite membranes were prepared by a simple papermaking process. The fiber exhibited good fiber morphology after being heat-treated to 900 °C. The composite membrane showed strong tensile strength and excellent dielectric properties. The tensile strength of the 20% PVDF composite membrane was 2.66 times that of pure BSLT membrane. Fiber membrane after compounding with PVDF maintained high dielectric constant εr with a small dielectric loss tanδ. It has good frequency stability in the range of 100 Hz to 100 kHz. The dielectric constant of 20% PVDF composite fiber membrane could still reach 49.5 (f = 1000 Hz). The dielectric constant and dielectric loss maintained good stability in the range of 40 to 160 °C. The dielectric constant and dielectric loss of the prepared fiber membrane possessed more stable temperature stability and frequency stability than those of barium titanate-based/organic polymer membranes prepared by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.D. Stojanovic, C.R. Foschini, V.B. Pavlovic, V.M. Pavlovic, V. Pejovic, J.A. Varela, Barium titanate screen-printed thick films. Ceram. Int. 28, 293–298 (2002)

    Article  CAS  Google Scholar 

  2. Z. Tian, X. Wang, L. Shu, T. Wang, T.-H. Song, Z. Gui, L. Li, Preparation of nano BaTiO3- based ceramics for multilayer ceramic capacitor application by chemical coating method. J. Am. Ceram. Soc. 92, 830–833 (2009)

    Article  CAS  Google Scholar 

  3. G. Yang, Z. Yue, J. Zhao, H. Wen, X. Wang, L. Li, Dielectric behaviour of BaTiO3-based ceramic multilayer capacitors under high dc bias field. J. Phys. D. Appl. Phys. 39, 3702–3707 (2006)

    Article  CAS  Google Scholar 

  4. G. Liu, Y. Li, Z. Wang, L. Zhang, Z. He, Dielectric, ferroelectric and energy storage properties of lead-free (1–x)Ba0.9Sr0.1TiO3-xBi(Zn0.5Zr0.5)O3 ferroelectric ceramics sintered at lower temperature. Ceram. Int. 45, 15556–15565 (2019)

    Article  CAS  Google Scholar 

  5. K. Abe, S. Komatsu, Ferroelectric properties in epitaxially grown BaxSr1−xTiO3 thin films. J. Appl. Phys. 77, 6461–6465 (1995)

    Article  CAS  Google Scholar 

  6. A. Kumari, B. Dasgupta Ghosh, Effect of strontium doping on structural and dielectric behaviour of barium titanate nanoceramics. Adv. Appl. Ceram. 117, 427–435 (2018)

    Article  CAS  Google Scholar 

  7. V. Reymond, D. Michau, S. Payan, M. Maglione, Substantial reduction of the dielectric losses of Ba0.6Sr0.4TiO3 thin films using a SiO2 barrier layer. J. Phys.: Condens. Matter 16, 9155–9162 (2004)

    CAS  Google Scholar 

  8. G.Z. Zhang, X.S. Zhang, H.B. Huang, J.J. Wang, Q. Li, L.Q. Chen, Q. Wang, Toward wearable cooling devices: highly flexible electrocaloric Ba0.67Sr0.33TiO3 nanowire arrays. Adv. Mater. 28, 4811–4816 (2016)

    Article  CAS  Google Scholar 

  9. V. Tomara, P.K. Jha, A.S.K. Sinhab, P.A. Jha, P. Singh, Enhancement in pyroelectricity of polar Ba0.9Sr0.1TiO3-TeO2 glass-ceramics. J. Non-Cryst. Solids 535, 119964 (2020)

    Article  CAS  Google Scholar 

  10. S. Aymenab, M. Mascotb, F. Jomnia, J.-C. Carru, High tunability in lead-free Ba0.85Sr0.15TiO3 thick films for microwave tunable applications. Ceram. Int. 45, 23084–23088 (2019)

    Article  CAS  Google Scholar 

  11. M. Rabuffi, G. Picci, Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans. Plasma Sci. 30, 1939–1942 (2002)

    Article  CAS  Google Scholar 

  12. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Fundamentals, processes and applications of high-permittivity polymer matrix composites. Prog. Mater. Sci. 57, 660–723 (2012)

    Article  CAS  Google Scholar 

  13. Z.M. Dang, J.-K. Yuan, S.-H. Yao, R.-J. Liao, Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334–6365 (2013)

    Article  CAS  Google Scholar 

  14. M. Arbatti, X. Shan, Z.-Y. Cheng, Ceramic-polymer composites with high dielectric constant. Adv. Mater. 19, 1369–1372 (2007)

    Article  CAS  Google Scholar 

  15. V.K. Thakur, R.K. Gupta, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116, 4260–4317 (2016)

    Article  CAS  Google Scholar 

  16. W.L. Yang, H.D. Li, J.Q. Lin, G.R. Chen, Y. Wang, L. Wang, H.W. Lu, L.Y. Chen, Q.Q. Lei, A novel all-organic DIPAB/PVDF composite film with high dielectric permittivity. J. Mater. Sci-Mater. Electron. 28, 9658–9666 (2017)

    Article  CAS  Google Scholar 

  17. Z.Y. Cheng, Q.M. Zhang, Dielectric relaxation behavior and its relation to micro-structure in relaxor ferroelectric polymers: high-energy electron irradiated poly(vinylidene fluoride–trifluoroethylene) copolymers. J. Appl. Phys. 92, 6749–6755 (2002)

    Article  CAS  Google Scholar 

  18. K. Han, Q. Li, C. Chanthad, M.R. Gadinski, G.Z. Zhang, Q. Wang, A hybrid material approach toward solution-processable dielectrics exhibiting enhanced breakdown strength and high energy density. Adv. Funct. Mater. 25, 3505–3513 (2015)

    Article  CAS  Google Scholar 

  19. X. Zhou, S. Zhang, Z. Suo, C. Zou, J. Runt, S. Liu, S. Zhang, Q.M. Zhang, Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer. Appl. Phys. Lett. 94, 162901 (2009)

    Article  CAS  Google Scholar 

  20. J.J. Li, J. Claude, L.E. Norena-Franco, S. Seok, Q. Wang, Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles. Chem. Mater. 20, 6304–6306 (2008)

    Article  CAS  Google Scholar 

  21. Z.M. Dang, Y.H. Lin, C.W. Nan, Novel ferroelectric polymer composites with high dielectric constants. Adv. Mater. 19, 1625 (2003)

    Article  CAS  Google Scholar 

  22. Z.M. Dang, H.Y. Wang, H.P. Xu, Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites. Appl. Phys. Lett. 89, 112902 (2006)

    Article  CAS  Google Scholar 

  23. W.M. Xia, Z. Xu, F. Wen, Z.C. Zhang, Electrical energy density and dielectric properties of poly(vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposites. Ceram. Int. 38, 1071–1075 (2012)

    Article  CAS  Google Scholar 

  24. Y. Song, Y. Shen, P. Hu, Y. Lin, C. Nan, Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3 nanofibers. Appl. Phys. Lett. 101, 152904 (2012)

    Article  CAS  Google Scholar 

  25. P. Hu, Y. Song, H. Liu, Y. Shen, Largely enhanced energy density in flexible P (VDF-TrFE) nanocomposites by surface-modified electrospun BaSrTiO3 fibers. J. Mater. Chem. 1, 1688–1693 (2013)

    Article  CAS  Google Scholar 

  26. H. Tang, H.A. Sodano, Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett. 13, 1373–1379 (2013)

    Article  CAS  Google Scholar 

  27. Y. Feng, W.L. Li, Y.F. Hou, Y. Yu, W.P. Cao, T.D. Zhang, W.D. Fei, Enhanced dielectric properties of PVDF-HFP/BaTiO3 -nanowires composites induced by inter-facial polarization and wire-shape. J. Mater. Chem. C 3, 1250–1260 (2013)

    Article  CAS  Google Scholar 

  28. S. Liu, S. Xue, W. Zhang, J. Zhai, Enhanced dielectric and energy storage density induced by surface-modified BaTiO3 nanofibers in poly(vinylidene fluoride) nanocomposites. Ceram. Int. 40, 15633–15640 (2014)

    Article  CAS  Google Scholar 

  29. X. Zhang, Y. Shen, Q. Zhang, L. Gu, Y. Hu, J. Du, Y. Lin, C. Nan, Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 27, 819–824 (2015)

    Article  CAS  Google Scholar 

  30. Z. Pan, L. Yao, J. Zhai, S. Liu, K. Yang, H. Wang, J. Liu, Fast discharge and high energy density of nanocomposite capacitors using Ba0.6Sr0.4TiO3 nanofibers. Ceram. Int. 42, 14667–14674 (2016)

    Article  CAS  Google Scholar 

  31. Z. Pan, L. Yao, J. Zhai, B. Shen, S. Liu, H. Wang, J. Liu, Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area. J. Mater. Chem. 4, 13259–13264 (2016)

    Article  CAS  Google Scholar 

  32. Y. Zhang, C. Zhang, Y. Feng, T. Zhang, Q. Chen, Q. Chi, L. Liu, G. Li, Y. Cui, X. Wang, Z. Dang, Q. Lei, Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 56, 138–150 (2019)

    Article  CAS  Google Scholar 

  33. X. Huang, B. Sun, Y. Zhu, S. Li, P. Jiang, High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater. Sci. 100, 187–225 (2019)

    Article  CAS  Google Scholar 

  34. Z. Dang, J. Yuan, J. Zha, T. Zhou, S. Li, G. Hu, Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater. Sci. 57, 660–723 (2012)

    Article  CAS  Google Scholar 

  35. C.K. Jeong, I. Kim, K. Park, M.H. Oh, H. Paik, G. Hwang, K. No, Y.S. Nam, K.J. Lee, Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 7, 11016–11025 (2013)

    Article  CAS  Google Scholar 

  36. H.B. Atitallah, Z. Ounaies, A. Muliana, A parametric study on flexible electro-active composites: importance of geometry and matrix properties. J. Intell. Mater. Syst. Struct. 26, 2386–2394 (2014)

    Article  CAS  Google Scholar 

  37. K.S. Chary, V. Kumar, C.D. Prasad, H.S. Panda, Dopamine-modified Ba0.85Ca0.15Zr0.1Ti0.9O3 ultra-fine fibers/PVDF-HFP composite–based nanogenerator: synergistic effect on output electric signal. J. Aust. Ceram. Soc. 56, 1107–1117 (2020)

    Article  CAS  Google Scholar 

  38. J. Chen, D. Ye, X. Wu, W. Zhu, X. Wang, P. Xiao, Z. Duan, X. Yu, Large enhancement of discharge energy density of polymer nanocomposites filled with one-dimension core-shell structured NaNbO3@SiO2 nanowires. Compos. Part A-Appl. Sci. 133, 105832 (2020)

    Article  CAS  Google Scholar 

  39. Z. Pan, L. Yao, G. Ge, B. Shen, J. Zhai, High-performance capacitors based on NaNbO3 nanowires/poly(vinylidene fluoride) nanocomposites. J. Mater. Chem. A 6, 14614–14622 (2018)

    Article  CAS  Google Scholar 

  40. L. Wang, Y.S. Xie, B.X. Liu, D.H. Ma, X.Q. Wang, L.Y. Zhu, X.T. Jin, Z.H. Wang, C.H. Xu, G.H. Zhang, D. Xu, Flexible TiO2 ceramic fibers near-infrared reflective membrane fabricated by electrospinning. Ceram. Int. 45, 6959–6965 (2019)

    Article  CAS  Google Scholar 

  41. B.X. Liu, X.J. Lin, L.Y. Zhun, X.Y. Wang, D. Xu, Fabrication of calcium zirconate fibers by the sol–gel method. Ceram. Int. 40, 12525–12531 (2014)

    Article  CAS  Google Scholar 

  42. R. Kavian, A. Saidi, Sol-gel derived BaTiO3 nanopowders. J. Alloys Compd. 468, 528–532 (2009)

    Article  CAS  Google Scholar 

  43. K.K. Yuan, Z.C. Yu, C.H. Xu, C. Feng, X.Z. Gan, X.Q. Wang, L.Y. Zhu, G.H. Zhang, D. Xu, Fabrication of dense barium zirconate fibers by electrospinning with different complex agents. J. Am. Ceram. Soc. 100, 4491–4499 (2017)

    Article  CAS  Google Scholar 

  44. K.K. Yuan, X.Z. Gan, X.Q. Wang, L.Y. Zhu, G.H. Zhang, D. Xu, Effects of atmosphere and stabilizer on the decomposition and crystallization of polyacetylacetonatozirconium. J. Therm. Anal. Calorim. 127, 1889–1895 (2016)

    Article  CAS  Google Scholar 

  45. Y.K. Chen, Y.F. Lin, Z.W. Peng, J.L. Lin, Transmission FT-IR study on the adsorption and reactions of lactic acid and poly(lactic acid) on TiO2. J. Phys. Chem. C 114, 17720–17727 (2010)

    Article  CAS  Google Scholar 

  46. V. Craciun, R.K. Singh, Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation. Appl. Phys. Lett. 76(14), 1932–1934 (2000)

    Article  CAS  Google Scholar 

  47. A. Rodrigues, S. Bauer, T. Baumbach, Effect of post-annealing on the chemical state and crystalline structure of PLD Ba0.5Sr0.5TiO3 films analyzed by combined synchrotron X-ray diffraction and X-ray photoelectron spectroscopy. Ceram. Int. 44, 16017–16024 (2018)

    Article  CAS  Google Scholar 

  48. D.D. Han, D.Y. Lu, F.L. Meng, Dielectric and photoluminescence properties of fine-grained BaTiO3 ceramics co-doped with amphoteric Sm and valence-variable Cr. RSC Adv. 9, 4469–4479 (2019)

    Article  CAS  Google Scholar 

  49. C. Xu, Y. Xia, Z. Liu, X. Meng, Chemical states change at (Ba, Sr)TiO3/Pt interfaces investigated by X-ray photoelectron spectroscopy. J. Phys. D: Appl. Phys. 42, 085302–085310 (2009)

    Article  CAS  Google Scholar 

  50. J.X. Liao, C. Yang, Z. Tian, H. Yang, L. Jin, The influence of postannealing on the chemical structures and dielectric properties of the surface layer of Ba0.6Sr0.4TiO3 films. J. Phys. D: Appl. Phys. 39, 2473–2478 (2006)

    Article  CAS  Google Scholar 

  51. C. Ostos, M.L. Martínez-Sarrión, L. Mestres, E. Delgado, P. Prieto, The influence of A-site rare-earth for barium substitution on the chemical structure and ferroelectric properties of BZT thin films. J. Solid State Chem. 182(10), 2620–2625 (2009)

    Article  CAS  Google Scholar 

  52. B. Zhang, Z. Quan, T. Zhang, T. Guo, S. Mo, Effect of oxygen gas and annealing treatment for magnetically enhanced reactive ion etched (Ba0.65, Sr0.35)TiO3 thin films. J. Appl. Phys. 101, 14107 (2007)

    Article  CAS  Google Scholar 

  53. Q. Hu, L. Jin, T. Wang, C. Li, Z. Xing, X. Wei, Dielectric and temperature stable energy storage properties of 0.88BaTiO3–0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloys Compd. 640, 416–420 (2015)

    Article  CAS  Google Scholar 

  54. F.D. Morrison, A.M. Coats, D.C. Sinclair, A.R. West, Charge compensation mechanisms in La-doped BaTiO3. J. Electroceram. 6, 219–232 (2001)

    Article  CAS  Google Scholar 

  55. X. Lu, X.W. Zou, J.L. Shen, L. Jin, F.X. Yan, G.Y. Zhao, L. Zhang, Z.-Y. Cheng, Characterizations of P(VDF-HFP)-BaTiO3 nanocomposite films fabricated by a spin-coating process. Ceram. Int. 45, 17758–17766 (2019)

    Article  CAS  Google Scholar 

  56. J.H. Jeon, Y.D. Hahn, H.D. Kim, Microstructure and dielectric properties of barium–strontium titanate with a functionally graded structure. J. Eur. Ceram. Soc. 21, 1653–1656 (2001)

    Article  CAS  Google Scholar 

  57. W. Li, Z. Xu, R. Chu, P. Fu, J. Hao, Sol–gel synthesis and characterization of Ba(1–x) SrxTiO3 ceramics. J. Alloys Compd. 499, 255–258 (2010)

    Article  CAS  Google Scholar 

  58. H. Rekik, Z. Ghallabi, I. Royaud, M. Arous, G. Seytre, G. Boiteux, A. Kallel, Dielectric relaxation behaviour in semi-crystalline polyvinylidene fluoride (PVDF)/TiO2 nanocomposites. Compos. B Eng. 45, 1199–1206 (2013)

    Article  CAS  Google Scholar 

  59. X. Lu, Y. Tong, Z.-Y. Cheng, Fabrication and characterization of free-standing, flexible and translucent BaTiO3-P(VDF-CTFE) nanocomposite films. J. Alloys Compd. 770, 327–334 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation (Grant No. ZR2020ME023), the Shandong University Young Scholars Program (Grant No. 2016WLJH27) and the Fundamental Research Funds for the Central Universities (Grant No. 2082019014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqiang Wang.

Ethics declarations

Conflict of interest

I declare the co-authors of this article have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Dong, Q., Shi, S. et al. Preparation and excellent dielectric properties of flexible Ba0.7Sr0.29La0.01TiO3 composite fiber ceramics. J Mater Sci: Mater Electron 32, 26359–26370 (2021). https://doi.org/10.1007/s10854-021-06995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06995-z

Navigation