Skip to main content
Log in

Comparative study on thermal and electrical transport properties of hexagonal boron nitride and reduced graphene oxide/epoxy nanocomposite by transient plane source techniques and impedance spectroscopy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Within the scope of the study, the thermal conductivity (TC) and thermal diffusivity (TD) of hexagonal boron nitride (h-BN) and reduced graphene (r-GO)-based epoxy nanocomposites were investigated and compared. In addition, the dielectric properties and electrical conductivity of the two were also investigated. The heat transport phenomenon of h-BN/epoxy and r-GO/epoxy nanocomposites were investigated using the transient plane source (HOT DISK) technique at room temperature. The h-BN/epoxy nanocomposites exhibited a higher thermal transport than the r-GO/epoxy nanocomposites. A high TC of ~ 2.6 W/mK and a high TD of ~ 9 mm2/s were observed at a h-BN loading of 2 vol% in the nanocomposite. The TC and TD values were ~ 33% and ~ 119% higher than r-GO/epoxy nanocomposite. The relative dielectric permittivity \({(\varepsilon }_{r})\) and loss (δ) was observed to be higher for r-GO/epoxy nanocomposite when compared to h-BN/epoxy nanocomposites. High relative dielectric permittivity of ~ 7.5 and loss of ~ 0.07 was obtained at a r-GO loading of ~ 2.2 vol% in the nanocomposite. Further, both nanocomposites retained a high electrical resistance. The study indicates h-BN/epoxy nanocomposite to hold significant potential for heat management in electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Yao, X. Zeng, F. Wang, R. Sun, J. Xu, C.-P. Wong, Chem. Mater. 28, 1049 (2016)

    Article  CAS  Google Scholar 

  2. J.-R. Choi, Y.S. Lee, S.-J. Park, J. Ind. Eng. Chem. 20, 3421 (2014)

    Article  CAS  Google Scholar 

  3. L. Weng, H. Wang, X. Zhang, L. Liu, H. Zhang, J. Mater. Sci.: Mater. Electron. 29, 14267 (2018)

    CAS  Google Scholar 

  4. X. Zhang, J. Zhang, X. Zhang, C. Li, J. Wang, H. Li, L. Xia, H. Wu, S. Guo, Compos. Sci. Technol. 150, 217 (2017)

    Article  CAS  Google Scholar 

  5. W. Cui, F. Du, J. Zhao, W. Zhang, Y. Yang, X. Xie, Y.-W. Mai, Carbon 49, 495 (2011)

    Article  CAS  Google Scholar 

  6. S. Nikkeshi, M. Kudo, T. Masuko, J. Appl. Polym. Sci. 69, 2593 (1998)

    Article  CAS  Google Scholar 

  7. C. Wong, R.S. Bollampally, J. Appl. Polym. Sci. 74, 3396 (1999)

    Article  CAS  Google Scholar 

  8. Y.-M. Chen, J.-M. Ting, Carbon 40, 359 (2002)

    Article  CAS  Google Scholar 

  9. M.A. Raza, A. Westwood, C. Stirling, J. Mater. Sci.: Mater. Electron. 29, 8822 (2018)

    CAS  Google Scholar 

  10. L.M. Veca, M.J. Meziani, W. Wang, X. Wang, F. Lu, P. Zhang, Y. Lin, R. Fee, J.W. Connell, Y. Sun, Adv. Mater. 21, 2088 (2009)

    Article  CAS  Google Scholar 

  11. A.K. Singh, B.P. Panda, S. Mohanty, S.K. Nayak, M.K. Gupta, J. Mater. Sci.: Mater. Electron. 28, 8908 (2017)

    CAS  Google Scholar 

  12. W.S. Lee, J. Yu, Diam. Relat. Mater. 14, 1647 (2005)

    Article  CAS  Google Scholar 

  13. M.W. Akhtar, J.S. Kim, M.A. Memon, M.Y. Khan, M.M. Baloch, J. Mater. Sci.: Mater. Electron. 32, 15307–15316 (2021)

    CAS  Google Scholar 

  14. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, Nat. Nanotechnol. 5, 722 (2010)

    Article  CAS  Google Scholar 

  15. Y. Xu, D.D.L. Chung, Compos. Interfaces 7, 243 (2000)

    Article  CAS  Google Scholar 

  16. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotechnol. 3, 491 (2008)

    Article  CAS  Google Scholar 

  17. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008)

    Article  Google Scholar 

  18. S.H. Song, K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun, D.J. Lee, B. Kong, K. Paik, S. Jeon, Adv. Mater. 25, 732 (2013)

    Article  CAS  Google Scholar 

  19. X. Shen, Z. Wang, Y. Wu, X. Liu, Y.-B. He, J.-K. Kim, Nano Lett. 16, 3585 (2016)

    Article  CAS  Google Scholar 

  20. A. Govorov, D. Wentzel, S. Miller, A. Kanaan, I. Sevostianov, Int. J. Eng. Sci. 123, 174 (2018)

    Article  CAS  Google Scholar 

  21. C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Adv. Mater. 21, 2889 (2009)

    Article  CAS  Google Scholar 

  22. J. Yu, X. Huang, C. Wu, X. Wu, G. Wang, P. Jiang, Polymer 53, 471 (2012)

    Article  CAS  Google Scholar 

  23. C. Yu, J. Zhang, Z. Li, W. Tian, L. Wang, J. Luo, Q. Li, X. Fan, Y. Yao, Compos. Part A: Appl. Sci. Manuf. 98, 25 (2017)

    Article  CAS  Google Scholar 

  24. D. Lee, S. Lee, S. Byun, K.-W. Paik, S.H. Song, Compos. Part A: Appl. Sci. Manuf. 107, 217 (2018)

    Article  CAS  Google Scholar 

  25. J. Hou, G. Li, N. Yang, L. Qin, M.E. Grami, Q. Zhang, N. Wang, X. Qu, RSC Adv. 4, 44282 (2014)

    Article  CAS  Google Scholar 

  26. A. Nag, K. Raidongia, K.P. Hembram, R. Datta, U.V. Waghmare, C. Rao, ACS Nano 4, 1539 (2010)

    Article  CAS  Google Scholar 

  27. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)

    Article  CAS  Google Scholar 

  28. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A.S. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 12, 2078 (2018)

    Article  CAS  Google Scholar 

  29. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)

    Article  CAS  Google Scholar 

  30. H.-B. Cho, N.C. Tu, T. Fujihara, S. Endo, T. Suzuki, S. Tanaka, W. Jiang, H. Suematsu, K. Niihara, T. Nakayama, Mater. Lett. 65, 2426 (2011)

    Article  CAS  Google Scholar 

  31. P.K.S. Mural, A. Banerjee, M.S. Rana, A. Shukla, B. Padmanabhan, S. Bhadra, G. Madras, S. Bose, J. Mater. Chem. A 2, 17635 (2014)

    Article  CAS  Google Scholar 

  32. F.T. Johra, W.-G. Jung, Appl. Surf. Sci. 357, 1911 (2015)

    Article  CAS  Google Scholar 

  33. Y. Gong, D. Li, Q. Fu, C. Pan, Prog. Nat. Sci.: Mater. Int. 25, 379 (2015)

    Article  CAS  Google Scholar 

  34. T. Log, S. Gustafsson, Fire Mater. 19, 43 (1995)

    Article  CAS  Google Scholar 

  35. E. Solórzano, J. Reglero, M. Rodríguez-Pérez, D. Lehmhus, M. Wichmann, J. De Saja, Int. J. Heat Mass Transf. 51, 6259 (2008)

    Article  Google Scholar 

  36. W. Zhou, S. Qi, C. Tu, H. Zhao, C. Wang, J. Kou, J. Appl. Polym. Sci. 104, 1312 (2007)

    Article  CAS  Google Scholar 

  37. L. Huang, P. Zhu, G. Li, D.D. Lu, R. Sun, C. Wong, J. Mater. Chem. A 2, 18246 (2014)

    Article  CAS  Google Scholar 

  38. K. Ramanaiah, A.R. Prasad, K.H.C. Reddy, Mater. Des. 40, 103 (2012)

    Article  CAS  Google Scholar 

  39. P. Dashora, G. Gupta, Polymer 37, 231 (1996)

    Article  CAS  Google Scholar 

  40. A. Salazar, Eur. J. Phys. 24, 351 (2003)

    Article  CAS  Google Scholar 

  41. S. Prolongo, R. Moriche, A. Jiménez-Suárez, M. Sánchez, A. Ureña, Eur. Polym. J. 61, 206 (2014)

    Article  CAS  Google Scholar 

  42. X. Chen, Y. Lu, X. Zhang, F. Zhao, Mater. Des. 40, 497 (2012)

    Article  CAS  Google Scholar 

  43. L. Evseeva, S. Tanaeva, Cryogenics 38, 253 (1998)

    Article  CAS  Google Scholar 

  44. A. Ramos, S.H. Pezzin, H.D. Farias, D. Becker, R.H. Bello, L.A.F. Coelho, Physica B 499, 57 (2016)

    Article  CAS  Google Scholar 

  45. F.H. Gojny, M.H. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, A.H. Windle, K. Schulte, Polymer 47, 2036 (2006)

    Article  CAS  Google Scholar 

  46. A. Chandran, K. George, J. Nanopart. Res. 16, 2238 (2014)

    Article  Google Scholar 

  47. M. Hamidinejad, B. Zhao, R.K. Chu, N. Moghimian, H.E. Naguib, T. Filleter, C.B. Park, ACS Appl. Mater. Interfaces. 10, 19987 (2018)

    Article  CAS  Google Scholar 

  48. X. He, K. Yao, Appl. Phys. Lett. 89, 112909 (2006)

    Article  Google Scholar 

  49. H. Fang, S.-L. Bai, C.P. Wong, Compos. Part A: Appl. Sci. Manuf. 100, 71 (2017)

    Article  CAS  Google Scholar 

  50. Y. Sun, Z. Yang, D. Cai, Q. Li, H. Li, S. Wang, D. Jia, Y. Zhou, Ceram. Int. 43, 8230 (2017)

    Article  CAS  Google Scholar 

  51. M. Misra, M. Agarwal, D.W. Sinkovits, S.K. Kumar, C. Wang, G. Pilania, R. Ramprasad, R.A. Weiss, X. Yuan, T.M. Chung, Macromolecules 47, 1122 (2014)

    Article  CAS  Google Scholar 

  52. C. Rayssi, S.E. Kossi, J. Dhahri, K. Khirouni, RSC Adv. 8, 17139 (2018)

    Article  CAS  Google Scholar 

  53. H. Maie, B.I. Lee, J. Mater. Sci.: Mater. Electron. 20, 619 (2009)

    CAS  Google Scholar 

  54. X. Zeng, S. Yu, R. Sun, J. Appl. Polym. Sci. 128, 1353 (2013)

    CAS  Google Scholar 

  55. H. Jin, I. Tsekmes, J. Wu, A. R. Mor, J. Smit, In 2017 International Symposium on Electrical Insulating Materials (ISEIM) (2017), pp. 141–143.

Download references

Acknowledgements

The authors would like to thank the Department of Chemical Engineering, National Institute of Technology Calicut (NITC), India, for providing the infrastructure and other necessary facilities. We also acknowledge the Department of Mechanical engineering, Department of Electrical Engineering of NITC, India for Thermal conductivity and Electrical properties measurements. Further, the authors also would like to acknowledge the School of Materials Science and Engineering NITC, India for XRD, FTIR, TGA, and SEM analysis.

Funding

This work was supported by TEQIP Phase III of National Institute of Technology Calicut, Kerala, India, under the head “B. Tech. Innovation Project 2018-2019” and “B. Tech. Innovation Project 2019-2020”. Also, partial financial support by “Faculty Research Seed Grand- 2019-2020” of National Institute of Technology Calicut, Kerala, India to Dr. Prasanna Kumar S. Mural.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed to the work.

Corresponding author

Correspondence to Prasanna Kumar S. Mural.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandran, A.M., Varun, S. & Mural, P.K.S. Comparative study on thermal and electrical transport properties of hexagonal boron nitride and reduced graphene oxide/epoxy nanocomposite by transient plane source techniques and impedance spectroscopy. J Mater Sci: Mater Electron 32, 25350–25362 (2021). https://doi.org/10.1007/s10854-021-06994-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06994-0

Navigation