Skip to main content
Log in

Frequency and voltage-dependent dielectric spectroscopy characterization of Al/(Coumarin-PVA)/p-Si structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the frequency/voltage dependence of the dielectric constant (ε′), dielectric loss (ε″), real/imaginary components of the complex electric modulus (M′, M″), tangent loss (tan δ), ac electrical conductivity (σac), real and the imaginary parts of the complex impedance (Z*), phase angle (θ) between resistance current, and capacitive current of the Al/(Coumarin: PVA)/p-Si structures were investigated using C/G-V-f measurements in wide range of frequency (10 kHz–1 MHz) and voltage (± 5 V) by 0.05 V steps. These parameters showed strong dependence on frequency and voltage due to the existence of surface states (Nss), their life/relaxation time (τ), series resistance (Rs), and polarization processes. ε′ and ε″ values were found to be high at lower frequencies and this was explained by the fact that the interfacial dipoles have enough time to orient themselves in the direction of the signal and thus Nss can easily follow it. M′−V and M″−V plots both have a distinctive peak at depletion region and peak position shifts toward accumulation region with increasing frequency due to restructuring and reordering of Nss under electric field and polarization. ln(σ)−ln(f) plots for accumulation region show two linear parts with different slopes, and this provides an evidence to the existence of two different conduction mechanisms which correspond to intermediate and high frequency regions. The strong dispersion in ε′ and ε″ at lower frequencies was attributed to the Nss, Maxwell–Wagner-type polarizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  2. İ Yücedağ, G. Ersöz, A. Gümüş, Ş Altındal, Int. J. Mod. Phys. B 29, 1550075 (2015)

    Google Scholar 

  3. E. H. Nicollian, J. R. Brews, Metal oxide semiconductor (MOS) physics and technology (New York, 1982).

  4. O. Pakma, N. Serin, T. Serin, Ş Altındal, J. Phys. D Appl. Phys. 41, 215103 (2008)

    Google Scholar 

  5. I. Orak, A. Kocyigit, S. Alindal, Chin. Phys. B 26(2), 028102 (2017)

    Google Scholar 

  6. H.G. Çetinkaya, M. Yıldırım, P. Durmuş, Ş Altındal, J. Alloys Compd. 728, 896 (2017)

    Google Scholar 

  7. S. Altındal Yerişkin, J. Mater. Sci. Mater. Electron. 30, 17032 (2019)

    Google Scholar 

  8. S. Demirezen, J. Mater. Sci. Mater. Electron. 30, 19854 (2019)

    CAS  Google Scholar 

  9. S. Altındal Yerişkin, M. Balbaşı, I. Orak, J. Mater. Sci. Mater. Electron. 28, 7819 (2017)

    Google Scholar 

  10. A. Kaya, S. Alialy, S. Demirezen, M. Balbaşı, S.A. Yerişkin, A. Aytimur, Ceram. Int. 42, 3322 (2016)

    CAS  Google Scholar 

  11. S. Altındal Yerişkin, M. Balbaşı, A. Tataroğlu, J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43827

    Article  Google Scholar 

  12. S. Demirezen, S. Altındal Yerişkin, Polym. Bull. 77, 49 (2020)

    CAS  Google Scholar 

  13. S. Demirezen, Appl. Phys. A Mater. Sci. Process 112, 827 (2013)

    CAS  Google Scholar 

  14. C.V. Subba Reddy, X. Han, Q.-Y. Zhu, L.-Q. Mai, W. Chen, Microelectron. Eng. 83, 281 (2006)

    CAS  Google Scholar 

  15. Y. Badali, Ş Altındal, İ Uslu, Prog. Nat. Sci. Mater. Int. 28, 325 (2018)

    CAS  Google Scholar 

  16. N. Rajeswari, S. Selvasekarapandian, S. Karthikeyan, M. Prabu, G. Hirankumar, H. Nithya, C. Sanjeeviraja, J. Non Cryst. Solids 357, 3751 (2011)

    CAS  Google Scholar 

  17. N. Baraz, İ Yücedağ, Y. Azizian-Kalandaragh, G. Ersöz, İ Orak, Ş Altındal, B. Akbari, H. Akbari, J. Electron. Mater. 46, 4276 (2017)

    CAS  Google Scholar 

  18. A. Kaya, Ö. Vural, H. Tecimer, S. Demirezen, Ş Altindal, Curr. Appl. Phys. 14, 322 (2014)

    Google Scholar 

  19. B. Sahin, F. Bayansal, M. Yuksel, N. Biyikli, H.A. Çetinkara, Ceram. Int. 40, 5237 (2014)

    CAS  Google Scholar 

  20. O. Çiçek, H. Uslu Tecimer, S.O. Tan, H. Tecimer, I. Orak, Ş Altındal, Compos. Part B Eng. 113, 14 (2017)

    Google Scholar 

  21. H.G. Çetinkaya, Ş Altındal, I. Orak, I. Uslu, J. Mater. Sci. Mater. Electron. 28, 7905 (2017)

    Google Scholar 

  22. Ç. Bilkan, Y. Azizian-Kalandaragh, Ş Altındal, R. Shokrani-Havigh, Phys. B Condens. Matter 500, 154 (2016)

    CAS  Google Scholar 

  23. Y. Şafak-Asar, T. Asar, Ş Altındal, S. Özçelik, J. Alloys Compd. 628, 442 (2015)

    Google Scholar 

  24. M. Mumtaz, N.A. Khan, Phys. C Supercond. 469, 728 (2009)

    CAS  Google Scholar 

  25. M. Popescu, I. Bunget, Physics of Solid Dielectrics (Elsevier, Amsterdam, 1984)

    Google Scholar 

  26. C.P. Symth, Dielectric Behaviour and Structure (McGraw-Hill, New York, 1995)

    Google Scholar 

  27. A. Chelkowski, Dielectric Physics (Elsevier, Amsterdam, 1980)

    Google Scholar 

  28. A. Kyritsis, P. Pissis, J. Grammatikakis, J. Polym. Sci. Part B Polym. Phys. 33, 1737 (1995)

    CAS  Google Scholar 

  29. M.S.P. Reddy, H.S. Kang, J.H. Lee, V.R. Reddy, J.S. Jang, J. Appl. Polym. Sci. 131, 1 (2014)

    Google Scholar 

  30. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1971)

    Google Scholar 

  31. E.E. Tanrıkulu, S. Demirezen, Ş Altındal, İ Uslu, J. Mater. Sci. Mater. Electron. 29, 2890 (2018)

    Google Scholar 

  32. A. Kahouli, C. Marichy, A. Sylvestre, N. Pinna, A. Kahouli, C. Marichy, A. Sylvestre, N. Pinna, J. Appl. Phys. 117(15), 154101 (2015)

    Google Scholar 

  33. Ç. Bilkan, A. Gümüş, Ş Altındal, Mater. Sci. Semicond. Process. 39, 484 (2015)

    CAS  Google Scholar 

  34. A.A. Sattar, S.A. Rahman, Phys. Status Solidi 200, 415 (2003)

    CAS  Google Scholar 

  35. M.H. Khan, S. Pal, E. Bose, Appl. Phys. A 118, 907 (2015)

    CAS  Google Scholar 

  36. S. Karadaş, S. Altındal Yeriskin, M. Balbası, Y. Azizian-Kalandaragh, 148, (2021).

  37. Y. Azizian-Kalandaragh, I. Yücedağ, G. Ersöz Demir, Ş Altındal, J. Mol. Struct. 1224, 129325 (2021)

    CAS  Google Scholar 

  38. N. Karaoğlan, H.U. Tecimer, Ş Altındal, C. Bindal, J. Mater. Sci. Mater. Electron. 30, 14224 (2019)

    Google Scholar 

  39. Z. Wang, W. Zhou, L. Dong, X. Sui, H. Cai, J. Zuo, Q. Chen, J. Alloys Compd. 682, 738 (2016)

    CAS  Google Scholar 

  40. G. Chauhan, R. Srivastava, P. Tyagi, A. Kumar, P.C. Srivastava, M.N. Kamalasanan, Synth. Met. 160, 1422 (2010)

    CAS  Google Scholar 

  41. A. Mars, H. Essaidi, J. Ouerfelli, J. Alloys Compd. 688, 553 (2016)

    CAS  Google Scholar 

  42. T. Badapanda, R. Harichandan, S. Nayak, A. Mishra, S. Anwar, Process. Appl. Ceram. 8, 145 (2014)

    Google Scholar 

  43. S. Sharma, T. Basu, A. Shahee, K. Singh, N.P. Lalla, E.V. Sampathkumaran, J. Alloys Compd. 663, 289 (2016)

    CAS  Google Scholar 

  44. K.R. Sahu, U. De, J. Mater. 2013, 1 (2013)

    Google Scholar 

  45. L.L. Hench, J.L. West, Principles of Electronic Ceramics (Willey, New York, 1990)

    Google Scholar 

  46. Md.M. Hoque, A. Dutta, S. Kumar, T.P. Sinha, J. Mater. Sci. Tecnol. 30, 311 (2014)

    CAS  Google Scholar 

  47. H.N. Chandrakala, B. Ramaraj, Shivakumaraiah, G.M. Madhu, Siddaramaiah, J. Mater. Sci. 47, 8076 (2012)

  48. T.N. Ghosh, S.S. Pradhan, S.K. Sarkar, A.K. Bhunia, Mater. Sci. Mater. Electron. 32, 19157–19178 (2021)

    CAS  Google Scholar 

  49. T.N. Ghosh, A.K. Bhunia, S.S. Pradhan, S.K. Sarkar, J. Mater. Sci. Mater. Electron. 31, 15919–15930 (2020)

    CAS  Google Scholar 

  50. A.K. Bhunia, S.S. Pradhan, K. Bhunia, A.K. Pradhan, S. Saha, J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-06742-4

    Article  Google Scholar 

  51. A.K. Bhunia, S. Saha, J. Mater. Sci. Mater. Electron. 32, 9912–9928 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Amasya University Scientific Research Projects with FMB-BAP 17-0292 number and Gazi University Scientific Research Projects with GU-BAP.05/2018-10 number.

Author information

Authors and Affiliations

Authors

Contributions

SD and SAY participated in the investigation, writing, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to Selçuk Demirezen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirezen, S., Yerişkin, S.A. Frequency and voltage-dependent dielectric spectroscopy characterization of Al/(Coumarin-PVA)/p-Si structures. J Mater Sci: Mater Electron 32, 25339–25349 (2021). https://doi.org/10.1007/s10854-021-06993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06993-1

Navigation