Skip to main content

Advertisement

Log in

Preparation of ternary composite CF@γ-MnO2/PANI material in electrochemical supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, a ternary hybrid material carbon fiber/manganese dioxide/polyaniline (CF@γ-MnO2/PANI) is synthesized for its utility in supercapacitor application. γ-MnO2 nanoparticles are loaded on the surface of CF under hydrothermal conditions to prepare CF@γ-MnO2. Subsequently, PANI in situ polymerized on the surface of CF@γ-MnO2 to form CF@γ-MnO2/PANI ternary composite. The electrochemical performance of CF@γ-MnO2/PANI is investigated using cyclic voltammetry (CV), galvanostatic charge–discharge measurement (GCD), and electrochemical impedance spectroscopy (EIS). Compared with CF/PANI and PANI, the as-prepared ternary hybrid material exhibits the highest capacitance of 654.3 F g−1 at a current density of 1 A g−1, its rate performance is 78.1% (10 A g−1), and 75.94% of the initial capacitance after 4000 charge–discharge cycles. The asymmetric supercapacitor shows a specific capacitance of 260 F g −1 and high energy density 30.9 Wh kg−1 at a power density of 750 W kg−1, good cycling stability by maintaining 73.2% initial capacitance after 5000 cycles. The good capacitive behaviors demonstrated that the low-cost CF provides an excellent base for γ-MnO2 and PANI. The nanoparticles γ-MnO2 is supported on the surface of CF and coated by PANI, which effectively improves the utilization rate of MnO2 and PANI. It could be a promising material for supercapacitors applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Yu, X. Ge, C. Bulin et al., Facile fabrication and energy storage analysis of graphene/PANI paper electrodes for supercapacitor application. Electrochim. Acta 253, 239–247 (2017). https://doi.org/10.1016/j.electacta.2017.09.071

    Article  CAS  Google Scholar 

  2. H. He, L. Ma, S. Fu et al., Fabrication of 3D ordered honeycomb-like nitrogen-doped carbon/PANI composite for high-performance supercapacitors. Appl. Surf. Sci. 484, 1288–1296 (2019). https://doi.org/10.1016/j.apsusc.2019.04.133

    Article  CAS  Google Scholar 

  3. Y. Chen, J. Huang, X. Zhang, H. Xu, Fabrication of hybrid supercapacitor of RGO//PPyNTs/Co(OH)2 based on K3Fe(CN)6 redox-active electrolyte. J. Electroanal. Chem. 884, 115069 (2021). https://doi.org/10.1016/j.jelechem.2021.115069

    Article  CAS  Google Scholar 

  4. J. Cherusseri, K.K. Kar, Hierarchically mesoporous carbon nanopetal based electrodes for flexible supercapacitors with super-long cyclic stability. J. Mater. Chem. A 3, 21586–21598 (2015). https://doi.org/10.1039/C5TA05603A

    Article  CAS  Google Scholar 

  5. R. Kumar, S. Sahoo, E. Joanni et al., Heteroatom doped graphene engineering for energy storage and conversion. Mater. Today 39, 47–65 (2020). https://doi.org/10.1016/j.mattod.2020.04.010

    Article  CAS  Google Scholar 

  6. J. Cherusseri, K.K. Kar, Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. J. Mater. Chem. A 4, 9910–9922 (2016). https://doi.org/10.1039/C6TA02690G

    Article  CAS  Google Scholar 

  7. S. Huang, Y. Han, S. Lyu et al., A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors. Nanotechnology 28, 435204 (2017). https://doi.org/10.1088/1361-6528/aa84cb

    Article  CAS  Google Scholar 

  8. C. Zhu, X. Dong, X. Mei et al., Direct laser writing of MnO2 decorated graphene as flexible supercapacitor electrodes. J. Mater. Sci. 55, 17108–17119 (2020). https://doi.org/10.1007/s10853-020-05212-2

    Article  CAS  Google Scholar 

  9. Y. Zhang, S. Yu, G. Lou et al., Review of macroporous materials as electrochemical supercapacitor electrodes. J. Mater. Sci. 52, 11201–11228 (2017). https://doi.org/10.1007/s10853-017-0955-3

    Article  CAS  Google Scholar 

  10. C. Xiong, T. Li, T. Zhao et al., Three-dimensional graphene/MnO2 nanowalls hybrid for high-efficiency electrochemical supercapacitors. NANO 13, 1850013 (2018). https://doi.org/10.1142/S1793292018500133

    Article  CAS  Google Scholar 

  11. Y. Huo, H. Zhang, J. Jiang, Y. Yang, A three-dimensional nanostructured PANI/MnOx porous microsphere and its capacitive performance. J. Mater. Sci. 47, 7026–7034 (2012). https://doi.org/10.1007/s10853-012-6654-1

    Article  CAS  Google Scholar 

  12. C. Xiong, X. Lin, H. Liu et al., Fabrication of 3D expanded graphite-based (MnO2 nanowalls and PANI nanofibers) hybrid as bifunctional material for high-performance supercapacitor and sensor. J. Electrochem. Soc. 166, A3965–A3971 (2019). https://doi.org/10.1149/2.0181916jes

    Article  CAS  Google Scholar 

  13. L. Chen, Z. Song, G. Liu et al., Synthesis and electrochemical performance of polyaniline–MnO2 nanowire composites for supercapacitors. J. Phys. Chem. Solids 74, 360–365 (2013). https://doi.org/10.1016/j.jpcs.2012.10.013

    Article  CAS  Google Scholar 

  14. Y. Zhu, H. Xu, J. Tang et al., Synthesis of γ-MnO2/PANI composites for supercapacitor application in acidic electrolyte. J. Electrochem. Soc. 168, 030542 (2021). https://doi.org/10.1149/1945-7111/abef82

    Article  CAS  Google Scholar 

  15. S. Liang, F. Teng, G. Bulgan et al., Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J. Phys. Chem. C 112, 5307–5315 (2008). https://doi.org/10.1021/jp0774995

    Article  CAS  Google Scholar 

  16. D.K. Walanda, G.A. Lawrance, S.W. Donne, Kinetics of Mn2O3 digestion in H2SO4 solutions. J. Solid State Chem. 182, 1336–1342 (2009). https://doi.org/10.1016/j.jssc.2009.02.034

    Article  CAS  Google Scholar 

  17. B. De et al., Transition metal oxide-/carbon-/electronically conducting polymer-based ternary composites as electrode materials for supercapacitors, in Handbook of Nanocomposite Supercapacitor Materials II. Springer Series in Materials Science, vol. 302, ed. by K. Kar (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-52359-6_15

    Chapter  Google Scholar 

  18. D. Gueon, J.H. Moon, MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors. ACS Sustain. Chem. Eng. 5, 2445–2453 (2017). https://doi.org/10.1021/acssuschemeng.6b02803

    Article  CAS  Google Scholar 

  19. C. Yuan, L. Su, B. Gao, X. Zhang, Enhanced electrochemical stability and charge storage of MnO2/carbon nanotubes composite modified by polyaniline coating layer in acidic electrolytes. Electrochim. Acta 53, 7039–7047 (2008). https://doi.org/10.1016/j.electacta.2008.05.037

    Article  CAS  Google Scholar 

  20. M. Dirican, M. Yanilmaz, A.M. Asiri, X. Zhang, Polyaniline/MnO2/porous carbon nanofiber electrodes for supercapacitors. J. Electroanal. Chem. 861, 113995 (2020). https://doi.org/10.1016/j.jelechem.2020.113995

    Article  CAS  Google Scholar 

  21. I. Kaushal, A.K. Sharma, P. Saharan et al., Superior architecture and electrochemical performance of MnO2 doped PANI/CNT graphene fastened composite. J. Porous Mater. 26, 1287–1296 (2019). https://doi.org/10.1007/s10934-019-00728-8

    Article  CAS  Google Scholar 

  22. J. Zhu, Y. Xu, J. Hu et al., Facile synthesis of MnO2 grown on nitrogen-doped carbon nanotubes for asymmetric supercapacitors with enhanced electrochemical performance. J. Power Sources 393, 135–144 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.022

    Article  CAS  Google Scholar 

  23. Y. Chen, X. Zhang, C. Xu, H. Xu, The fabrication of asymmetry supercapacitor based on MWCNTs/MnO2/PPy composites. Electrochim. Acta 309, 424–431 (2019). https://doi.org/10.1016/j.electacta.2019.04.072

    Article  CAS  Google Scholar 

  24. H. Wang, Q. Hao, X. Yang et al., Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun. 11, 1158–1161 (2009). https://doi.org/10.1016/j.elecom.2009.03.036

    Article  CAS  Google Scholar 

  25. H. Liu, Y. Wang, X. Gou et al., Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications. Mater. Sci. Eng. B 178, 293–298 (2013). https://doi.org/10.1016/j.mseb.2012.12.002

    Article  CAS  Google Scholar 

  26. H. Xu, Y. Zhu, M. Zhang et al., Eigenstate PANI–coated paper fiber with graphene materials for high-performance supercapacitor. Ionics 26, 5199–5210 (2020). https://doi.org/10.1007/s11581-020-03672-9

    Article  CAS  Google Scholar 

  27. C. Xiong, M. Li, W. Zhao et al., Flexible N-doped reduced graphene oxide/carbon nanotube-MnO2 film as a multifunctional material for high-performance supercapacitors, catalysts and sensors. J. Materiomics 6, 523–531 (2020). https://doi.org/10.1016/j.jmat.2020.03.008

    Article  Google Scholar 

  28. A. Xie, F. Tao, C. Jiang et al., A coralliform-structured γ-MnO2/polyaniline nanocomposite for high-performance supercapacitors. J. Electroanal. Chem. 789, 29–37 (2017). https://doi.org/10.1016/j.jelechem.2017.02.032

    Article  CAS  Google Scholar 

  29. D. Hou, H. Tao, X. Zhu, M. Li, Polydopamine and MnO2 core-shell composites for high-performance supercapacitors. Appl. Surf. Sci. 419, 580–585 (2017). https://doi.org/10.1016/j.apsusc.2017.05.080

    Article  CAS  Google Scholar 

  30. Y. Zhang, G. Li, Y. Lv et al., Electrochemical investigation of MnO2 electrode material for supercapacitors. Int. J. Hydrogen Energy 36, 11760–11766 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.020

    Article  CAS  Google Scholar 

  31. S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112, 4406–4417 (2008). https://doi.org/10.1021/jp7108785

    Article  CAS  Google Scholar 

  32. S.R. Sivakkumar, J.M. Ko, D.Y. Kim et al., Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochim. Acta 52, 7377–7385 (2007). https://doi.org/10.1016/j.electacta.2007.06.023

    Article  CAS  Google Scholar 

  33. H. Xu, J. Zhang, Y. Chen et al., Synthesis of polyaniline-modified MnO2 composite nanorods and their photocatalytic application. Mater. Lett. 117, 21–23 (2014). https://doi.org/10.1016/j.matlet.2013.11.089

    Article  CAS  Google Scholar 

  34. K. Ghosh, C.Y. Yue, M.M. Sk, R.K. Jena, Development of 3D urchin-shaped coaxial manganese dioxide@polyaniline (MnO2@PANI) composite and self-assembled 3D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application. ACS Appl. Mater. Interfaces 9, 15350–15363 (2017). https://doi.org/10.1021/acsami.6b16406

    Article  CAS  Google Scholar 

  35. X. Cao, Y. Liu, Y. Zhong et al., Flexible coaxial fiber-shaped asymmetric supercapacitors based on manganese, nickel co-substituted cobalt carbonate hydroxides. J. Mater. Chem. A 8, 1837–1848 (2020). https://doi.org/10.1039/C9TA11942F

    Article  CAS  Google Scholar 

  36. M. Huang, F. Li, F. Dong et al., MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 3, 21380–21423 (2015). https://doi.org/10.1039/C5TA05523G

    Article  CAS  Google Scholar 

  37. J.R.I. Jaidev, A.K. Mishra, S. Ramaprabhu, Polyaniline–MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte. J. Mater. Chem. 21, 17601 (2011). https://doi.org/10.1039/C1JM13191E

    Article  CAS  Google Scholar 

  38. Z. Pan, J. Yang, Q. Zhang et al., All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility. Adv. Energy Mater. 9, 1802753 (2019). https://doi.org/10.1002/aenm.201802753

    Article  CAS  Google Scholar 

  39. Y. Zhao, C.-A. Wang, Nano-network MnO2/polyaniline composites with enhanced electrochemical properties for supercapacitors. Mater. Des. 97, 512–518 (2016). https://doi.org/10.1016/j.matdes.2016.02.120

    Article  CAS  Google Scholar 

  40. S.-B. Yoon, E.-H. Yoon, K.-B. Kim, Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications. J. Power Sources 196, 10791–10797 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.107

    Article  CAS  Google Scholar 

  41. Z. Zou, W. Zhou, Y. Zhang et al., High-performance flexible all-solid-state supercapacitor constructed by free-standing cellulose/reduced graphene oxide/silver nanoparticles composite film. Chem. Eng. J. 357, 45–55 (2019). https://doi.org/10.1016/j.cej.2018.09.143

    Article  CAS  Google Scholar 

  42. W. Liu, S. Wang, Q. Wu et al., Fabrication of ternary hierarchical nanofibers MnO2/PANI/CNT and theirs application in electrochemical supercapacitors. Chem. Eng. Sci. 156, 178–185 (2016). https://doi.org/10.1016/j.ces.2016.09.025

    Article  CAS  Google Scholar 

  43. A.G. Macdiarmid, J.C. Chiang, A.F. Richter, A.J. Epstein, Polyaniline: a new concept in conducting polymers. Synth. Met. 18, 285–290 (1987). https://doi.org/10.1016/0379-6779(87)90893-9

    Article  CAS  Google Scholar 

  44. D.J. Ahirrao, H.M. Wilson, N. Jha, TiO2-nanoflowers as flexible electrode for high performance supercapacitor. Appl. Surf. Sci. 491, 765–778 (2019). https://doi.org/10.1016/j.apsusc.2019.05.076

    Article  CAS  Google Scholar 

  45. L.M. da Silva, D.A. de Lima Almeida, S.S. Oishi et al., From electrode to device characterizations of polyaniline/micro and nanodiamond/carbon fiber as ternary composites applied as supercapacitor. J. Solid State Electrochem. 23, 1871–1885 (2019). https://doi.org/10.1007/s10008-019-04297-3

    Article  CAS  Google Scholar 

  46. A. Eftekhari, L. Li, Y. Yang, Polyaniline supercapacitors. J. Power Sources 347, 86–107 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.054

    Article  CAS  Google Scholar 

  47. L. Chen, L.-J. Sun, F. Luan et al., Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J. Power Sources 195, 3742–3747 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.036

    Article  CAS  Google Scholar 

  48. H. Wang, X. Wang, C. Peng et al., Preparation and the electrochemical performance of MnO2/PANI@CNT composite for supercapacitors. J. Nanosci. Nanotechnol. 15, 709–714 (2015). https://doi.org/10.1166/jnn.2015.9166

    Article  CAS  Google Scholar 

  49. T. Liu, G. Shao, M. Ji, G. Wang, Polyaniline/MnO2 composite with high performance as supercapacitor electrode via pulse electrodeposition. Polym. Compos. 36, 113–120 (2015). https://doi.org/10.1002/pc.22919

    Article  CAS  Google Scholar 

  50. N. Arsalani, A.G. Tabrizi, L.S. Ghadimi, Novel PANI/MnFe2O4 nanocomposite for low-cost supercapacitors with high rate capability. J. Mater. Sci.: Mater. Electron. 29, 6077–6085 (2018). https://doi.org/10.1007/s10854-018-8582-6

    Article  CAS  Google Scholar 

  51. K.T. Kubra, A. Javaid, R. Sharif et al., Facile synthesis and electrochemical study of a ternary hybrid PANI/GNP/MnO2 as supercapacitor electrode material. J. Mater. Sci.: Mater. Electron. 31, 12455–12466 (2020). https://doi.org/10.1007/s10854-020-03792-y

    Article  CAS  Google Scholar 

  52. S.P. Armes, M. Aldissi, Potassium iodate oxidation route to polyaniline: an optimization study. Polymer 32, 2043–2048 (1991). https://doi.org/10.1016/0032-3861(91)90170-N

    Article  CAS  Google Scholar 

  53. J. Zhu, Y. Xu, J. Wang et al., Morphology controllable nano-sheet polypyrrole-graphene composites for high-rate supercapacitor. Phys. Chem. Chem. Phys. 17, 19885–19894 (2015). https://doi.org/10.1039/C5CP02710A

    Article  CAS  Google Scholar 

  54. K. Ghosh, C.Y. Yue, M.M. Sk et al., Development of a 3D graphene aerogel and 3D porous graphene/MnO2 @polyaniline hybrid film for all-solid-state flexible asymmetric supercapacitors. Sustain. Energy Fuels 2, 280–293 (2018). https://doi.org/10.1039/C7SE00433H

    Article  CAS  Google Scholar 

  55. X. Zhao, C. Chen, Z. Huang et al., Rational design of polyaniline/MnO2/carbon cloth ternary hybrids as electrodes for supercapacitors. RSC Adv. 5, 66311–66317 (2015). https://doi.org/10.1039/C5RA10916G

    Article  CAS  Google Scholar 

  56. Q. Jiang, Y. Shang, Y. Sun et al., Flexible and multi-form solid-state supercapacitors based on polyaniline/graphene oxide/CNT composite films and fibers. Diam. Relat. Mater. 92, 198–207 (2019). https://doi.org/10.1016/j.diamond.2019.01.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (51763015, 51503092), the Program for Hongliu First-class Discipline Construction in Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Xu or Yong Chen.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Xu, H., Tang, J. et al. Preparation of ternary composite CF@γ-MnO2/PANI material in electrochemical supercapacitors. J Mater Sci: Mater Electron 32, 25300–25317 (2021). https://doi.org/10.1007/s10854-021-06989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06989-x

Navigation