Skip to main content
Log in

Local structure, glass transition, structural relaxation, and crystallization of functional oxide glasses investigated by Mössbauer spectroscopy and DTA

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This review paper summarizes early Mössbauer and DTA studies of different oxide glasses containing small amounts of iron (III) or tin (IV) as the probe. A lot of valuable information of the atomic level has been obtained about the role of nonbridging oxygen (NBO), network former (NWF), network modifier (NWM), local network structure, glass transition, structural relaxation, crystallization, etc. Introduction of alkali oxide into iron (III)-containing oxide glass causes a marked decrease in glass transition temperature (Tg) amounting to 100 °C and a concordant decrease in quadrupole splitting (Δ) of FeIII, which reflects decreased distortion of NWF–oxygen polyhedra and formation of NBO. By contrast, introduction of non-alkali oxide into oxide glass causes an increase in Tg amounting to more than 100 °C and a concordant increase in Δ, reflecting increased distortion of NWF–oxygen polyhedra in highly cross-linked network. These experimental results led to a discovery of “Tg-Δ rule”, which was consistent with the “conformer model” proposed for polymers by Matsuoka and Quan. Debye temperatures (θD) obtained by low-temperature Mössbauer measurements proved to be useful to determine short- and long-range structures of glass and glass ceramics. Isothermal annealing of vanadate glasses at temperatures higher than Tg or crystallization temperature (Tc) causes a “tunable” decrease in DC-resistivity from the order of MΩ cm to Ω cm. Introduction of metal oxide with a narrow bandgap (Eg) is highly effective to increase the conductivity after the annealing. It was proved that “structural relaxation” of NWF–oxygen polyhedra and resultant decrease in the activation energy (Ea) for conduction are responsible for the improved conductivity. Heat treatment of IR-transmitting aluminate, gallate, and tellurite glasses at temperatures higher than Tg or Tc revealed that crystallization was triggered by the cleavage of NWF–oxygen bonds. These findings will contribute to the development of functional glass and glass ceramics such as smart glass and eco-friendly glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. S. Lee, P.J. Bray, J. Chem. Phys. 39, 2863 (1963)

    Article  CAS  Google Scholar 

  2. G.E. Jellison Jr., P.J. Bray, J. Non-Cryst. Solids 29(2), 187 (1978)

    Article  CAS  Google Scholar 

  3. T. Nishida, Y. Takashima, J. Non-Cryst. Solids 37(1), 37 (1980)

    Article  CAS  Google Scholar 

  4. T. Nishida, T. Shiotsuki, Y. Takashima, J. Non-Cryst. Solids 41(2), 161 (1980)

    Article  CAS  Google Scholar 

  5. T. Nishida, T. Hirai, Y. Takashima, J. Non-Cryst. Solids 43(2), 221 (1981)

    Article  CAS  Google Scholar 

  6. U. Hoppe, G. Walter, D. Stachel, A.C. Hannon, Z. Naturforsch. A 51(3), 179 (1996)

    Article  CAS  Google Scholar 

  7. T. Nishida, T. Shiotsuki, Y. Takashima, J. Non-Cryst. Solids 43(1), 115 (1981)

    Article  CAS  Google Scholar 

  8. T. Nishida, T. Shiotsuki, Y. Takashima, J. Non-Cryst. Solids 43(1), 123 (1981)

    Article  CAS  Google Scholar 

  9. D.L. Griscom, J. Non-Cryst. Solids 13, 107 (1973/74)

  10. T. Nishida, Y. Miyamoto, Y. Takashima, Bull. Chem. Soc. Jpn. 56(2), 439 (1983)

    Article  CAS  Google Scholar 

  11. T. Nishida, Z. Naturforsch. 51a, 620 (1996)

    Article  Google Scholar 

  12. T. Nishida, T. Hirai, Y. Takashima, Phys. Chem. Glasses 22(4), 94 (1981)

    CAS  Google Scholar 

  13. T. Nishida, T. Hirai, Y. Takashima, Bull. Chem. Soc. Jpn. 54(12), 3735 (1981)

    Article  CAS  Google Scholar 

  14. M.K. Murthy, E.M. Kirby, Phys. Chem. Glasses 5, 144 (1964)

    Google Scholar 

  15. S. Sakka, K. Kamiya, T. Mizuno, Res. Rep. Fac. Eng. Mie Univ. 2, 73 (1977)

    CAS  Google Scholar 

  16. S. Sakka, K. Kamiya, M. Hayashi, Bull. Inst. Chem. Res. Kyoto Univ. 59, 172 (1981)

    CAS  Google Scholar 

  17. T. Nishida, M. Katada, Y. Takashima, Bull. Chem. Soc. Jpn. 57(12), 3566 (1984)

    Article  CAS  Google Scholar 

  18. H. Verweij, J.H.J.M. Buster, J. Non-Cryst. Solids 34, 81 (1979)

    Article  CAS  Google Scholar 

  19. B.M.J. Smets, T.P.A. Lommen, J. Non-Cryst. Solids 46, 21 (1981)

    Article  CAS  Google Scholar 

  20. T. Nishida, S. Saruwatari, Y. Takashima, Bull. Chem. Soc. Jpn. 61(7), 2347 (1988)

    Article  CAS  Google Scholar 

  21. T. Nishida, H. Ide, Y. Takashima, Bull. Chem. Soc. Jpn. 63(2), 548 (1990)

    Article  CAS  Google Scholar 

  22. J.E. Stanworth, Nature 169, 581 (1952)

    Article  CAS  Google Scholar 

  23. N. Mochida, K. Takahashi, K. Nakata, Yogyo Kyokai Shi 86, 26 (1978)

    Article  Google Scholar 

  24. A.A. Bahgat, E.E. Shaisha, A.I. Sabry, J. Mater. Sci. 22, 1323 (1987)

    Article  CAS  Google Scholar 

  25. T. Nishida, S. Saruwatari, Y. Takashima, Bull. Chem. Soc. Jpn. 61(11), 4093 (1988)

    Article  CAS  Google Scholar 

  26. T. Nishida, M. Yamada, H. Ide, Y. Takashima, J. Mater. Sci. 25, 3546 (1990)

    Article  CAS  Google Scholar 

  27. R. Akagi, K. Handa, N. Ohtori, A.C. Hannon, M. Tatsumisago, N. Umesaki, J. Non-Cryst. Solids 256 & 257, 111 (1999)

    Article  CAS  Google Scholar 

  28. T. Nishida, Y. Yamaguchi, M. Yamada, Y. Takashima, Bull. Chem. Soc. Jpn. 64(1), 154 (1991)

    Article  CAS  Google Scholar 

  29. T. Nishida, Y. Takashima, Bull. Chem. Soc. Jpn. 60, 941 (1987)

    Article  CAS  Google Scholar 

  30. A. Byström, K.A. Wilhelmi, O. Brotzen, Acta Chem. Scand. 4, 1119 (1950)

    Article  Google Scholar 

  31. S.L. Segel, R.B. Greel, Can. J. Phys. 48, 2673 (1970)

    Article  CAS  Google Scholar 

  32. H.T. Evans, Z. Crystallogr. 114, 257 (1960)

    CAS  Google Scholar 

  33. Y. Dimitriev, V. Dimitrov, M. Arnaudov, D. Tapalov, J. Non-Cryst. Solids 57, 147 (1983)

    Article  CAS  Google Scholar 

  34. T. Nishida, M. Ogata, Y. Takashima, Bull. Chem. Soc. Jpn. 60, 2887 (1987)

    Article  CAS  Google Scholar 

  35. T. Nishida, M. Ogata, Y. Takashima, J. Non-Cryst. Solids 95 & 96, 241 (1987)

    Article  Google Scholar 

  36. T. Nishida, S. Saruwatari, Y. Takashima, Bull. Chem. Soc. Jpn. 61, 2343 (1988)

    Article  CAS  Google Scholar 

  37. T. Nishida, Y. Takashima, J. Non-Cryst. Solids 94, 229 (1987)

    Article  CAS  Google Scholar 

  38. T. Nishida, I. Furumoto, Y. Fujita, S. Kubuki, N. Oka, J. Mater. Sci.: Mater. Electron. 29(4), 2654 (2018). https://doi.org/10.1007/s10854-017-8191-9

    Article  CAS  Google Scholar 

  39. P. Fröbel, K. Bärner, J. Non-Cryst. Solids 88, 329 (1986)

    Article  Google Scholar 

  40. T. Nishida, M. Suzuki, S. Kubuki, M. Katada, Y. Maeda, J. Non-Cryst. Solids 194, 23 (1996)

    Article  CAS  Google Scholar 

  41. A.W. Wells, Structural Inorganic Chemistry, Chs 11 & 13, 5th edn. (Oxford Press, Oxford, 1984)

    Google Scholar 

  42. T. Nishida, T. Isobe, M. Katada, Hyperfine Interact. 94, 2113 (1994)

    Article  CAS  Google Scholar 

  43. I. Furumoto, S. Kubuki, T. Nishida, Radioisotopes 61(9), 463 (2012)

    Article  CAS  Google Scholar 

  44. S. Kubuki, H. Masuda, K. Akiyama, I. Furumoto, T. Nishida, Hyperfine Interact. 207, 61 (2012). https://doi.org/10.1007/s10751-011-0433-2

    Article  CAS  Google Scholar 

  45. T. Nishida, in Mössbauer Spectroscopy of Sophisticated Oxides, ed. by A. Vértes, Z. Homonnay (Budapest, Akadémiai Kiadó, 1997), pp. 27–87

  46. T. Nishida, in Introduction to the Mössbauer Spectroscopy: -Principles and Applications-, ed. by F.E. Fujita (Tokyo, Agne Gijutsu Center, 1999), pp. 169–266 (in Japanese)

  47. T. Nishida, J. Iwashita, S. Kubuki, J. Ceram. Soc. Jpn. 107(5), 408 (1999)

    Article  CAS  Google Scholar 

  48. T. Nishida, S. Kubuki, J. Radioanal. Nucl. Chem. 239(2), 237 (1999)

    Article  CAS  Google Scholar 

  49. G. Adam, G.H. Gibbs, J. Chem. Rev. 43, 139 (1965)

    CAS  Google Scholar 

  50. S. Matsuoka, X. Quan, Macromolecules 24, 2770 (1991)

    Article  CAS  Google Scholar 

  51. J. Dudowicz, K.F. Freed, J.F. Douglas, J. Phys. Chem. B 109, 21285 (2005)

    Article  CAS  Google Scholar 

  52. T. Nishida, A. Nakamura, Y. Takashima, Chem. Lett. 1984, 1683 (1984)

    Article  Google Scholar 

  53. T. Nishida, Y. Takashima, Bull. Chem. Soc. Jpn. 59, 2789 (1986)

    Article  CAS  Google Scholar 

  54. T. Nishida, K. Kawakami, Solid State Commun. 107(9), 453 (1998)

    Article  CAS  Google Scholar 

  55. T. Nishida, T. Nonaka, Y. Takashima, Bull. Chem. Soc. Jpn. 58, 2255 (1985)

    Article  CAS  Google Scholar 

  56. H. Kurimoto, T. Nishida, S. Okada, J. Yamaki, J. Ceram. Soc. Jpn. 116(5), 637 (2008)

    Article  CAS  Google Scholar 

  57. T. Nishida, Kor. J. Ceram. 6 (1), 9 (2000) (Proc. PACRIM'98, 21 Sep., Kyongju, Korea 1998)

  58. T. Kanaya, K. Kaji, Kobunshi Ronbunshu 53(10), 648 (1996) (in Japanese)

    Article  CAS  Google Scholar 

  59. T. Kanaya, Kobunshi 52(10), 773 (2003) (in Japanese)

    Article  CAS  Google Scholar 

  60. L. Berthier, M. Ozawa, C. Scalliet, J. Chem. Phys. 150, 160902 (2019). https://doi.org/10.1063/1.5091961

    Article  CAS  Google Scholar 

  61. W. Kauzmann, Chem. Rev. 43, 219 (1948)

    Article  CAS  Google Scholar 

  62. T. Nishida, M. Katada, N. Osawa, R. Sato, K. Komatsu, K. Matusita, Hyperfine Interact. 94, 2119 (1994)

    Article  CAS  Google Scholar 

  63. T. Nishida, M. Katada, J. Kubota, Y. Takashima, F. Ichikawa, T. Fukami, T. Aomine, Hyperfine Interact. 93, 1659 (1994)

    Article  CAS  Google Scholar 

  64. T. Nishida, M. Katada, N. Miura, Y. Deshimaru, N. Yamazoe, Y. Matsumoto, Y. Takashima, Jpn. J. Appl. Phys. 31, L471 (1992)

    Article  CAS  Google Scholar 

  65. T. Nishida, M. Katada, N. Miura, Y. Deshimaru, T. Otani, N. Yamazoe, Y. Matsumoto, Y. Takashima, Jpn. J. Appl. Phys. 30, L735 (1991)

    Article  CAS  Google Scholar 

  66. T. Nishida, H. Ide, Y. Maeda, H. Nasu, T. Yagi, A. Sakai, Y. Takashima, Bull. Chem. Soc. Jpn. 62, 61 (1989)

    Article  CAS  Google Scholar 

  67. T. Nishida, Y. Takashima, M. Katada, Y. Matsumoto, T. Arakawa, Physica C 191, 297 (1992)

    Article  CAS  Google Scholar 

  68. T. Nishida, H. Ide, Y. Takashima, J. Ceram. Soc. Jpn. 97(3), 284 (1989)

    Article  CAS  Google Scholar 

  69. T. Nishida, Z. Klencsár, E. Kuzmann, A. Vértes, M. Tamaki, J. Radioanal. Nucl. Chem. 246(1), 57 (2000)

    Article  CAS  Google Scholar 

  70. T. Nishida, S. Kubuki, M. Katada, J. Radioanal. Nucl. Chem. 237(1–2), 47 (1998)

    Article  CAS  Google Scholar 

  71. P.A. Tick, Phys. Chem. Glasses 25(6), 149 (1984)

    CAS  Google Scholar 

  72. M. Anma, T. Yano, A. Yasumori, H. Kawazoe, M. Yamane, H. Yamanaka, M. Katada, J. Non-Cryst. Solids 135, 79 (1991)

    Article  CAS  Google Scholar 

  73. T. Nishida, S. Sasaki, T. Toma, Y. Maeda, Jpn. J. Appl. Phys. 34, L507 (1995)

    Article  CAS  Google Scholar 

  74. J.K. Lees, P.A. Flinn, J. Chem. Phys. 48, 882 (1968)

    Article  CAS  Google Scholar 

  75. J.J. Zuckermann, J. Inorg. Nucl. Chem. 29, 2191 (1967)

    Article  Google Scholar 

  76. H.J. Bornemann, G. Czjzek, D. Evert, C. Meyer, B. Renker, J. Phys. F 17, L337 (1987)

    Article  CAS  Google Scholar 

  77. J.M.D. Coey, K. Donnelly, Z. Phys. B 67, 513 (1987)

    Article  CAS  Google Scholar 

  78. X.Z. Zhou, M. Raudsepp, Q.A. Punkhurst, A.H. Morrish, Y.L. Luo, I. Maartense, Phys. Rev. B 36, 7230 (1987)

    Article  CAS  Google Scholar 

  79. P. Boolchand, R.N. Enzweiler, I. Zitkovsky, J. Wells, W. Bresser, D. MacDaniel, R.L. Meng, P.H. Hor, C.W. Chu, C.Y. Huang, Phys. Rev. B 37, 3766 (1988)

    Article  CAS  Google Scholar 

  80. T. Yuen, C.L. Lin, J.E. Cow, G.N. Meyer, R.E. Salomon, P. Schlottmann, N. Bykovertz, W.N. Herman, Phys. Rev. B 37, 3770 (1988)

    Article  CAS  Google Scholar 

  81. T. Nishida, K. Goto, S. Kubuki, T. Tamaki, J. Radioanal. Nucl. Chem. 246(1), 51 (2000)

    Article  CAS  Google Scholar 

  82. T. Nishida, S. Kubuki, J. Radioanal. Nucl. Chem. 246(1), 43 (2000)

    Article  Google Scholar 

  83. T. Nishida, J. Kubota, Y. Maeda, F. Ichikawa, T. Aomine, J. Mater. Chem. 6, 1889 (1996)

    Article  CAS  Google Scholar 

  84. I.H. Ismailzade, A.I. Alecberov, R.M. Ismailov, I.M. Aliyez, D.A. Rzayev, Ferroelectrics 23, 47 (1980)

    Article  CAS  Google Scholar 

  85. T. Nishida, S. Kubuki, in Mössbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology, ed. by V.K. Sharma, G. Klingelhöfer, T. Nishida (Wiley, Hoboken, 2013), pp. 542–551

  86. K. Fukuda, A. Ikeda, T. Nishida, Solid State Phenom. 90 & 91, 215 (2003)

    Article  Google Scholar 

  87. K. Matsuda, S. Kubuki, T. Nishida, AIP Conf. Proc. 1622 (msms2014), 3 (2014)

  88. S. Kubuki, H. Masuda, T. Nishida, J. Radioanal. Nucl. Chem. 295(2), 1123 (2013). https://doi.org/10.1007/s10967-012-1887-7

    Article  CAS  Google Scholar 

  89. S. Kubuki, K. Matsuda, K. Akiyama, Z. Homonnay, K. Sinkó, E. Kuzmann, T. Nishida, J. Non-Cryst. Solids 378, 227 (2013)

    Article  CAS  Google Scholar 

  90. T. Nishida, S. Kubuki, K. Matsuda, Y. Otsuka, Croat. Chem. Acta 88(4), 427 (2015)

    Article  CAS  Google Scholar 

  91. T. Nishida, Y. Fujita, S. Shiba, S. Masuda, N. Yamaguchi, T. Izumi, S. Kubuki, N. Oka, J. Mater. Sci.: Mater. Electron. 30(9), 8847 (2019). https://doi.org/10.1007/s10854-019-01211-5

    Article  CAS  Google Scholar 

  92. Y. Fujita, S. Masuda, H. Miyamoto, S. Kubuki, T. Nishida, N. Oka, Phys. Stat. Solidi A 216, 1800157 (2019). https://doi.org/10.1002/pssa.201800157

    Article  CAS  Google Scholar 

  93. T. Nishida, Y. Izutsu, M. Fujimura, K. Osouda, Y. Otsuka, S. Kubuki, N. Oka, Pure Appl. Chem. 89(4), 419 (2017). https://doi.org/10.1515/pac-2016-0916

    Article  CAS  Google Scholar 

  94. K. Osouda, S. Kubuki, K. Akiyama, T. Nishida, Mediterranean Conference on the Applications of the Mössbauer Effect (MECAME2016), Hotel Albatros, Cavtat (Dubrovnik), Croatia, 31 May–3 June, 2016

  95. S. Kubuki, H. Sakka, K. Tsuge, Z. Homonnay, K. Sinkó, E. Kuzmann, H. Yasumitsu, T. Nishida, J. Ceram. Soc. Jpn. 115(11), 776 (2007)

    Article  CAS  Google Scholar 

  96. S. Kubuki, K. Matsuda, K. Akiyama, T. Nishida, J. Radioanal. Nucl. Chem. 299(1), 453 (2014)

    Article  CAS  Google Scholar 

  97. W.B. Ingler Jr., S. Khan, Thin Solid Films 461(2), 301 (2004)

    Article  CAS  Google Scholar 

  98. N.J. Cherepy, D.B. Liston, J.A. Lovejoy, H. Deng, J.Z. Zhang, J. Phys. Chem. B 102, 770 (1998)

    Article  CAS  Google Scholar 

  99. Y.K. Jeong, G.M. Choi, J. Phys. Chem. Solids 57(1), 81 (1996)

    Article  CAS  Google Scholar 

  100. Y.S. Chaudhary, A. Agrawal, R. Shrivastav, V.R. Satsangi, S. Dass, Int. J. Hydrog. Energy 29, 131 (2004)

    Article  CAS  Google Scholar 

  101. T.D. Golden, M.G. Shumsky, Y. Zhou, R.A. Van der Werf, R.A. Van Leeuwen, J.A. Switzer, Chem. Mater. 8, 2499 (1996)

    Article  CAS  Google Scholar 

  102. M.J. Young, A.M. Holder, S.M. George, C.B. Musgrave, Chem. Mater. 27(4), 1172 (2015)

    Article  CAS  Google Scholar 

  103. K. Koike, S. Murakami, T. Iwata, R. Kamei, M. Yano, J. Soc. Mater. Sci. Jpn. 67(9), 849 (2018). ((in Japanese))

    Article  CAS  Google Scholar 

  104. C. Julien, A. Khelfa, O.M. Hussain, G.A. Nazri, J. Cryst. Growth 156(3), 235 (1995)

    Article  CAS  Google Scholar 

  105. V. Srikant, D.R. Clarke, J. Appl. Phys. 83(10), 5447 (1998)

    Article  CAS  Google Scholar 

  106. D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)

    Article  Google Scholar 

  107. S.S. Pan, C. Ye, X.M. Teng, H.T. Fan, G.H. Li, Appl. Phys. A 85(1), 21 (2006)

    Article  CAS  Google Scholar 

  108. H. Zhu, D. Yang, G. Yu, H. Zhang, K. Yao, Nanotechnology 17(9), 2386 (2006)

    Article  CAS  Google Scholar 

  109. H.H. Tippins, Phys. Rev. 140, A316 (1965)

    Article  Google Scholar 

  110. D. Shinohara, S. Fujita, Jpn. J. Appl. Phys. 47(9), 7311 (2008)

    Article  CAS  Google Scholar 

  111. T. Lange, W. Njoroge, H. Weis, M. Beckers, M. Wuttig, Thin Solid Films 365, 82 (2000)

    Article  CAS  Google Scholar 

  112. T. Kamimura, K. Sasaki, M.H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, M. Higashiwaki, Appl. Phys. Lett. 104, 192104 (2014). https://doi.org/10.1063/1.4876920

    Article  CAS  Google Scholar 

  113. C.V. Ramana, R.J. Smith, O.M. Hussain, C.C. Chusuei, C.M. Julien, Chem. Mater. 17, 1213 (2005)

    Article  CAS  Google Scholar 

  114. T. Nishida, N. Oka, T. Sakuragi, S. Matsusako, R. Imamura, Y. Sato, J. Mater. Sci.: Mater. Electron. 31, 22881 (2020). https://doi.org/10.1007/s10854-020-04815-4

    Article  CAS  Google Scholar 

  115. N.F. Mott, Adv. Phys. 16(61), 49 (1967)

    Article  CAS  Google Scholar 

  116. Z. Liu, Y. Liu, X. Wang, W. Li, Y. Zhi, X. Wang, P. Li, W. Tang, J. Appl. Phys. 126, 045707 (2019). https://doi.org/10.1063/1.5112067

    Article  CAS  Google Scholar 

  117. T. Nishida, H. Ide, T. Shinmyozu, Y. Takashima, Y. Matsumoto, Jpn. J. Appl. Phys. 29(7), 1293 (1990)

    Article  CAS  Google Scholar 

  118. T. Nishida, S. Kubuki, M. Shibata, Y. Maeda, T. Tamaki, J. Mater. Chem. 7(9), 1801 (1997)

    Article  CAS  Google Scholar 

  119. S. Kubuki, T. Nishida, J. Radioanal. Nucl. Chem. 239(2), 303 (1999)

    Article  CAS  Google Scholar 

  120. T. Nishida, T. Ichii, Y. Takashima, J. Mater. Chem. 2(7), 733 (1992)

    Article  CAS  Google Scholar 

  121. T. Nishida, S. Inoue, Y. Takashima, Bull. Chem. Soc. Jpn. 65(7), 1927 (1992)

    Article  CAS  Google Scholar 

  122. T. Kosuge, Y. Benino, V. Dimitrov, R. Sato, T. Komatsu, J. Non-Cryst. Solids 242(2–3), 154 (1998)

    Article  CAS  Google Scholar 

  123. I. Avramov, T. Vassilev, I. Penkov, J. Non-Cryst. Solids 351(6 & 7), 472 (2005)

    Article  CAS  Google Scholar 

  124. T.J. Clark, J.S. Reed, J. Am. Ceram. Soc. 69(11), 837 (1986)

    Article  CAS  Google Scholar 

  125. H. Mizuno, H. Tong, A. Ikeda, S. Mossa, J. Chem. Phys. 153, 154501 (2020). https://doi.org/10.1063/5.0021228

    Article  Google Scholar 

  126. E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, D.A. Weitz, Science 287, 627 (2000)

    Article  CAS  Google Scholar 

  127. U. Gasser, E.R. Weeks, A. Schofield, P.N. Pusey, D.A. Weitz, Science 292, 258 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (TN) is deeply indebted to all the foreign and domestic colleagues and students who worked with him when he was on the teaching staff of Kyushu University (Fukuoka, 1977–2000) and Kindai (Kinki) University (Fukuoka, 2000–2016). One of the authors (SK) is indebted to Tokyo Metropolitan University for financial support. Also, one of the authors (NO) is grateful for JSPS KAKENHI Grant Number JP21K04780, a research grant from Yoshida Foundation for the Promotion of Learning and Education, a research Grant from Nippon Sheet Glass Foundation for Materials Science and Engineering, and Kindai University Research of Grants of KD1902.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuaki Nishida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishida, T., Kubuki, S. & Oka, N. Local structure, glass transition, structural relaxation, and crystallization of functional oxide glasses investigated by Mössbauer spectroscopy and DTA. J Mater Sci: Mater Electron 32, 23655–23689 (2021). https://doi.org/10.1007/s10854-021-06855-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06855-w

Navigation